Skip to main content
Log in

Roaming in the isotopic reactions of H + MgD and D + MgH

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article, the dynamics of the nonreactive and abstraction channels for H + MgD and D + MgH reactions at low collision energies are studied with the quasi-classical trajectory method. Isotopic effects on both differential cross sections and the state distributions are obvious. By distinguishing the roaming processes into roaming during the reaction and roaming before product, differences in state distributions of the products and the isotopic effects are found in these two types of roaming.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. P.L. Houston, S.H. Kable, Photodissociation of acetaldehyde as a second example of the roaming mechanism. Proc. Natl. Acad. Sci. 103(44), 16079–16082 (2006). https://doi.org/10.1073/pnas.0604441103

    Article  Google Scholar 

  2. A.G. Suits, Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc. Chem. Res. 41(7), 873–881 (2008). https://doi.org/10.1021/ar8000734

    Article  Google Scholar 

  3. M.L. Hause, N. Herath, R. Zhu, M.C. Lin, A.G. Suits, Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nat. Chem. 3(12), 932–937 (2011). https://doi.org/10.1038/NCHEM.1194

    Article  Google Scholar 

  4. E. Kamarchik, L. Koziol, H. Reisler, J.M. Bowman, A.I. Krylov, Roaming pathway leading to unexpected water + vinyl products in \(\text{ C}_{2}\text{ H}_{4}\text{ OH }\) dissociation. J. Phys. Chem. Lett. 1(20), 3058–3065 (2010). https://doi.org/10.1021/jz1011884

    Article  Google Scholar 

  5. V. Goncharov, N. Herath, A.G. Suits, Roaming dynamics in acetone dissociation. J. Phys. Chem. A 112(39), 9423–9428 (2008). https://doi.org/10.1021/jp802534r

    Article  Google Scholar 

  6. B.R. Heazlewood, M.J. Jordan, S.H. Kable, T.M. Selby, D.L. Osborn, B.C. Shepler, B.J. Braams, J.M. Bowman, Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. Proc. Natl. Acad. Sci. 105(35), 12719–12724 (2008). https://doi.org/10.1073/pnas.0802769105

    Article  Google Scholar 

  7. D. Townsend, S.A. Lahankar, S.K. Lee, S.D. Chambreau, A.G. Suits, X. Zhang, J. Rheinecker, L.B. Harding, J.M. Bowman, The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306(5699), 1158–1161 (2004). https://doi.org/10.1126/science.1104386

    Article  Google Scholar 

  8. J.M. Bowman, Roaming. Mol. Phys. 112(19), 2516–2528 (2014). https://doi.org/10.1080/00268976.2014.897395

    Article  Google Scholar 

  9. X. Wang, Y. Zheng, H. Yang, Analysis of the roaming trajectories from the dynamic and kinematic perspectives: a representative study of triatomic systems. Chem. Phys. Lett. 776, 138599 (2021). https://doi.org/10.1016/j.cplett.2021.138599

    Article  Google Scholar 

  10. A. Li, J. Li, H. Guo, Quantum manifestation of roaming in \({\text{ H } + \text{ MgH }} \rightarrow {\text{ Mg } + \text{ H}_{2}}\): the birth of roaming resonances. J. Phys. Chem. A 117(24), 5052–5060 (2013). https://doi.org/10.1021/jp4049988

    Article  Google Scholar 

  11. F.A.L. Mauguière, P. Collins, S. Stamatiadis, A. Li, G.S. Ezra, S.C. Farantos, Z.C. Kramer, B.K. Carpenter, S. Wiggins, H. Guo, Towards understanding the roaming mechanism in \({\text{ H } + \text{ MgH }} \rightarrow {\text{ Mg } + \text{ HH }}\) reaction. J. Phys. Chem. A 120(27), 5145–5154 (2016). https://doi.org/10.1021/acs.jpca.6b00682

    Article  Google Scholar 

  12. Z. Huang, R. Li, M. Ge, Y. Zheng, X. Meng, H. Yang, Study of the dynamics and isotopic effects in the \(\text{ D } + \text{ MgD }\) reaction using the quasi-classical trajectory method. Chem. Phys. Lett. 685, 229–238 (2017). https://doi.org/10.1016/j.cplett.2017.07.076

    Article  Google Scholar 

  13. C.D. Foley, C. Xie, H. Guo, A.G. Suits, Orbiting resonances in formaldehyde reveal coupling of roaming, radical, and molecular channels. Science 374, 1122–1127 (2021). https://doi.org/10.1126/science.abk0634

    Article  Google Scholar 

  14. Y. Xie, H. Zhao, Y. Wang, Y. Huang, T. Wang, X. Xu, C. Xiao, Z. Sun, D.H. Zhang, X. Yang, Quantum interference in \({\text{ H } + \text{ HD }} \rightarrow {\text{ H}_{2} + \text{ D }}\) between direct abstract and roaming insertion pathways. Science 368, 767–771 (2020). https://doi.org/10.1126/science.abb1564

    Article  MathSciNet  Google Scholar 

  15. A. Nandi, P. Zhang, J. Chen, H. Guo, J.M. Bowman, Quasiclassical simulations based on cluster models reveal vibration-facilitated roaming in the isomerization of \(\text{ CO }\) adsorbed on \(\text{ NaCl }\). Nat. Chem. 13, 249–254 (2021). https://doi.org/10.1038/s41557-020-00612-y

    Article  Google Scholar 

  16. T. Takayanagi, T. Tanaka, Roaming dynamics in the \({\text{ MgH } + \text{ H }} \rightarrow {\text{ Mg } + \text{ H}_{2}}\) reaction: quantum dynamics calculations. Chem. Phys. Lett. 504(4), 130–135 (2011). https://doi.org/10.1016/j.cplett.2011.02.002

    Article  Google Scholar 

  17. S. Liu, X. Xu, D.H. Zhang, Communication: State-to-state quantum dynamics study of the \({\text{ OH } + \text{ CO }} \rightarrow {\text{ H } + \text{ CO}_2}\) reaction in full dimensions (\(j = 0\)). J. Chem. Phys. 135(14), 141108 (2011). https://doi.org/10.1063/1.3653787

    Article  Google Scholar 

  18. H. Yang, K.L. Han, G.C. Schatz, S.H. Lee, K. Liu, S.C. Smith, M. Hankel, Integral and differential cross sections for the \({\text{ S }(^{1}\text{ D}) + \text{ HD }}\) reaction employing the ground adiabatic electronic state. Phys. Chem. Chem. Phys. 11, 11587–11595 (2009). https://doi.org/10.1039/B917972K

    Article  Google Scholar 

  19. B.C. Shepler, B.J. Braams, J.M. Bowman, “Roaming’’ dynamics in \({\text{ CH}_{3}\text{ CHO }}\) photodissociation revealed on a global potential energy surface. J. Chem. Phys. A 112(39), 9344–9351 (2008). https://doi.org/10.1021/jp802331t

    Article  Google Scholar 

  20. W.A.D. Pires, J.D. Garrido, M.A.C. Nascimento, M.Y. Ballester, A quasi-classical trajectory study of the \({\text{ OH } + \text{ SO }}\) reaction: the role of ro-vibrational energy. Phys. Chem. Chem. Phys. 16, 12793–12801 (2014). https://doi.org/10.1039/C4CP01363H

    Article  Google Scholar 

  21. J.L. Rheinecker, X. Zhang, J.M. Bowman, Quasiclassical trajectory studies of the dynamics of \({\text{ H}_{2}\text{ CO }}\) on a global ab initio-based potential energy surface. Mol. Phys. 103(6–8), 1067–1074 (2005). https://doi.org/10.1080/00268970412331333483

    Article  Google Scholar 

  22. Y. Fu, Y. Bai, Y. Han, B. Fu, D.H. Zhang, Double-roaming dynamics in the \({\text{ H } + \text{ C}_{2}\text{ H}_{2}} \rightarrow {\text{ H}_{2} + \text{ C}_{2}\text{ H }}\) reaction: acetylene-facilitated roaming and vinylidene-facilitated roaming. J. Phys. Chem. Lett. 12, 4211–4217 (2021). https://doi.org/10.1021/acs.jpclett.1c01045

    Article  Google Scholar 

  23. Y. Fu, X. Lu, Y. Han, B. Fu, D.H. Zhang, J.M. Bowman, Collision-induced and complex-mediated roaming dynamics in the \({\text{ H } + \text{ C}_{2}\text{ H}_{4}} \rightarrow {\text{ H}_{2} + \text{ C}_{2}\text{ H}_{3}}\) reaction. Chem. Sci. 11, 2148–2154 (2020). https://doi.org/10.1039/C9SC05951B

    Article  Google Scholar 

  24. H. Li, D. Xie, H. Guo, An ab initio potential energy surface and vibrational states of \({\text{ MgH}_{2}}(1^{1}{\text{ A }}^{\prime })\). J. Chem. Phys. 121(9), 4156–4163 (2004). https://doi.org/10.1063/1.1777215

    Article  Google Scholar 

  25. H. Li, R.J. Le Roy, Spectroscopic properties of \({\text{ MgH}_{2}}\), \({\text{ MgD}_{2}}\), and \({\text{ MgHD }}\) calculated from a new ab initio potential energy surface. J. Phys. Chem. A 111(28), 6248–6255 (2007). https://doi.org/10.1021/jp072510m

    Article  Google Scholar 

  26. X. Hu, W.L. Hase, T. Pirraglia, Vectorization of the general Monte Carlo classical trajectory program VENUS. J. Compt. Chem. 12(8), 1014–1024 (1991). https://doi.org/10.1002/jcc.540120814

    Article  Google Scholar 

  27. R. Li, K. Han, F. Li, R. Lu, G. He, N. Lou, Rotational alignment of product molecules from the reactions \({\text{ Sr } + \text{ CH}_{3}\text{ Br }}\), \({\text{ C}_{2}\text{ H}_{5}\text{ Br }}\), \({\text{ n }-\text{ C}_{3}\text{ H}_{7}\text{ Br }}\), \({\text{ i }-\text{ C}_{3}\text{ H}_{7}\text{ Br }}\) by means of PLIF. Chem. Phys. Lett. 220(3), 281–285 (1994). https://doi.org/10.1016/0009-2614(94)00174-X

    Article  Google Scholar 

  28. F.J. Aoiz, L. Bañares, V.J. Herrero, Recent results from quasiclassical trajectory computations of elementary chemical reactions. J. Chem. Soc. Faraday Trans. 94, 2483–2500 (1998). https://doi.org/10.1039/A803469I

    Article  Google Scholar 

  29. K. Han, G. He, N. Lou, Effect of location of energy barrier on the product alignment of reaction \({\text{ A } + \text{ BC }}\). J. Chem. Phys. 105(19), 8699–8704 (1996). https://doi.org/10.1063/1.472651

    Article  Google Scholar 

  30. M. Ben-Num, R.D. Levine, Conservation of zero-point energy in classical trajectory computations by a simple semiclassical correspondence. J. Chem. Phys. 101, 8768–8783 (1994). https://doi.org/10.1063/1.468071

    Article  Google Scholar 

  31. W.H. Miller, W.L. Hase, C.L. Darling, A simple model for correcting the zero point energy problem in classical trajectory simulations of polyatomic molecules. J. Chem. Phys. 91, 2863–2868 (1989). https://doi.org/10.1063/1.456956

    Article  Google Scholar 

  32. Y. Sun, S.S. Dong, K.A. Parker, J.L. Bao, L. Zhang, D.G. Truhlar, Extended Hamiltonian molecular dynamics: semiclassical trajectories with improved maintenance of zero point energy. Phys. Chem. Chem. Phys. 20, 30209–30218 (2018). https://doi.org/10.1039/c8cp04914a

    Article  Google Scholar 

  33. J.M. Bowman, B. Gazdy, Q. Sun, A method to constrain vibrational energy in quasiclassical trajectory calculations. J. Chem. Phys. 91, 2859–2862 (1989). https://doi.org/10.1063/1.456955

    Article  Google Scholar 

  34. A.J.C. Varandas, Excitation function for \({\text{ H } + \text{ O}_{2}}\) reaction: a study of zero-point energy effects and rotational distributions in trajectory calculations. J. Chem. Phys. 99, 1076–1085 (1993). https://doi.org/10.1063/1.465407

    Article  Google Scholar 

  35. S. Tada, Treatment of quantum zero-point energy constraint in simulations of molecular dynamics. Eng. Comput. 28, 508–523 (2011). https://doi.org/10.1108/02644401111131911

    Article  MATH  Google Scholar 

  36. C.C. Martens, Surface hopping by consensus. J. Phys. Chem. Lett. 7, 2610–2615 (2016). https://doi.org/10.1021/acs.jpclett.6b01186

    Article  Google Scholar 

  37. B.C. Shepler, Y. Han, J.M. Bowman, Are roaming and conventional saddle points for \({\text{ H}_{2}\text{ CO }}\) and \({\text{ CH}_{3}\text{ CHO }}\) dissociation to molecular products isolated from each other? J. Phys. Chem. Lett. 2(7), 834–838 (2011). https://doi.org/10.1021/jz2002138

    Article  Google Scholar 

  38. L.B. Harding, S.J. Klippenstein, A.W. Jasper, Separability of tight and roaming pathways to molecular decomposition. J. Phys. Chem. A 116(26), 6967–6982 (2012). https://doi.org/10.1021/jp303581k

    Article  Google Scholar 

  39. J.M. Bowman, X. Zhang, New insights on reaction dynamics from formaldehyde photodissociation. Phys. Chem. Chem. Phys. 8, 321–332 (2006). https://doi.org/10.1039/B512847C

    Article  Google Scholar 

  40. W.H. Green, C.B. Moore, W.F. Polik, Transition states and rate constants for unimolecular reactions. Ann. Rev. Phys. Chem. 43(1), 591–626 (1992). https://doi.org/10.1146/annurev.pc.43.100192.003111

    Article  Google Scholar 

Download references

Acknowledgements

H. Yang thanks Prof. Joel M. Bowman for suggestions when visiting at Emory University. This work was supported by the National Natural Science Foundation of China (Grants No. 12174221 and No. 11674196). H. Yang is grateful for the support of the Taishan Scholars Project of Shandong Province (Grant No. ts201712011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XW performed the data curation and wrote the original draft. HY carried out the analysis, and reviewed and edited the draft. YZ provided computing resources and part of funding.

Corresponding author

Correspondence to Huan Yang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zheng, Y. & Yang, H. Roaming in the isotopic reactions of H + MgD and D + MgH. Eur. Phys. J. D 76, 184 (2022). https://doi.org/10.1140/epjd/s10053-022-00518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00518-z

Navigation