Skip to main content
Log in

Confinement of charged particles and non-neutral plasma in a magnetic mirror

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The loss rate of ion beams and the non-neutral plasma in an axisymmetric magnetic mirror is investigated in the present paper. It is found that the loss rate increases as the mass of the ions increases for a ion beam confined in a magnetic mirror. Moreover, both the electron loss rate and the ion loss rate are obtained when a non-neutral plasma is confined in a magnetic mirror. It seems that both loss rate remain unchanged in the regime when the electron number density is less than that of the ions. In the other regime that the electron number density is much larger than that of the ion number, the ion loss rate increases with the increase of electron number density, while the electron loss rate decreases as the electron number density increases. This result may help us to devise a mirror to separate the different charged particles by confining these different particles in a magnetic mirror.

Graphical Abstract

The electron loss rate and the ion loss rate are obtained when a non-neutral plasma is confined in a magnetic mirror. It seems that both loss rate remain unchanged in the regime when the electron number density is less than that of the ions. In the other regime that the electron number density is much larger than that of the ion number, the ion loss rate increases with the increase of electron number density, while the electron loss rate decreases as the electron number density increases..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:] The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availibility statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. T. Cho, M. Yoshida, J. Kohagura, M. Hirata, T. Numakura, H. Higaki, H. Hojo, M. Ichimura, K. Ishii, K.M. Islam et al., Phys. Rev. Lett. 94, 085002 (2005). https://doi.org/10.1103/PhysRevLett.94.085002

    Article  ADS  Google Scholar 

  2. Y. Takeiri, O. Kaneko, K. Tsumori, Y. Oka, K. Ikeda, M. Osakabe, K. Nagaoka, E. Asano, T. Kondo, M. Sato, M. Shibuya, Nucl. Fusion 46, 199–210 (2006). https://doi.org/10.1088/0029-5515/46/6/S01

    Article  ADS  Google Scholar 

  3. E. Mazzucato, Fusion Sci. Technol. 76, 7 (2020). https://doi.org/10.1080/15361055.2020.1795972

    Article  Google Scholar 

  4. E. Mazzucato, Fusion Sci. Technol. 75, 197 (2019). https://doi.org/10.1080/15361055.2018.1448202

    Article  Google Scholar 

  5. Z. Feng, G. Yu, P. Jiang, G.Y. Fu, Nucl. Fusion 61, 096021 (2021). https://doi.org/10.1088/1741-4326/ac0b4f

    Article  ADS  Google Scholar 

  6. E.I. Soldatkina, V.V. Maximov, V.V. Prikhodko, V.Y. Savkin, D.I. Skovorodin, D.V. Yakovlev et al., Nucl. Fusion 60(8), 086009 (2020). https://doi.org/10.1088/1741-4326/ab95d2

    Article  ADS  Google Scholar 

  7. A.V. Burdakov, V.V. Postupaev, Phys.-Usp. 61(6), 582–600 (2018). https://doi.org/10.3367/UFNe.2018.03.038342

    Article  ADS  Google Scholar 

  8. D. V. Yakovlev, A. G. Shalashov, E. D. Gospodchikov, A. L. Solomakhin, V. Y.Savkin, and P. A. Bagryansky, Nucl. Fusion 57, 016033 (2017).https://doi.org/10.1088/0029-5515/57/1/016033

  9. I. Izotov, D. Mansfeld, V. Skalyga, V. Zorin, T. Grahn, T. Kalvas, H. Koivisto, J. Komppula, P. Peura, O. Tarvainen, Phys. Plasmas 19, 122501 (2012). https://doi.org/10.1063/1.4769260

    Article  ADS  Google Scholar 

  10. N.K. Bibinov, V.F. Bratsev, D.B. Kokh, V.I. Ochkur, K. Wiesemann, Plasma Sources Sci. Technol. 14, 109 (2005). https://doi.org/10.1088/0963-0252/14/1/014

    Article  ADS  Google Scholar 

  11. G. Douysset, H. Khodja, A. Girard, J.P. Briand, Phys. Rev. E 61, 3015 (2000). https://doi.org/10.1103/PhysRevE.61.3015

    Article  ADS  Google Scholar 

  12. B. Zhang, X. Zhang, Thin Solid Films 714, 138396 (2020). https://doi.org/10.1016/j.tsf.2020.138396

    Article  ADS  Google Scholar 

  13. R.A. Treumann, Astron. Astrophys. Rev. 13, 229 (2006). https://doi.org/10.1007/s00159-006-0001-y

    Article  ADS  Google Scholar 

  14. D.C. Speirs, R. Bingham, R.A. Cairns, I. Vorgul, B.J. Kellett, A.D.R. Phelps, K. Ronald, Phys. Rev. Lett. 113, 155002 (2014). https://doi.org/10.1103/PhysRevLett.113.155002

    Article  ADS  Google Scholar 

  15. Teh, Wai-Leong. J. Geophys. Res. 125, 3 (2019). https://doi.org/10.1029/2018JA026416

  16. Changbo Zhu , Hui Zhang, Song Fu, Binbin Ni, R. J. Strangeway, B.L. Giles, Weixing Wan, Libo Liu, Yiding Chen, Huijun Le. J. Geophys. Res. 124, 6 (2019). https://doi.org/10.1029/2019JA026464

  17. S. L. Robertson, J. P. Eastwood, J. E. Stawarz, H. Hietala, T. D. Phan, B. Lavraud, J. L. Burch, B. Giles, D. J. Gershman, R. Torbert et al., J. Geophys. Res. 126, e2021JA029182, (2021). https://doi.org/10.1029/2021JA029182

  18. S. T. Yao, Q. Q. Shi, J. Liu, Z. H. Yao, R. L. Guo, N. Ahmadi, A. W. Degeling, Q. G. Zong, X. G. Wang, A. M. Tian, C. T. Russell, H. S. Fu, Z. Y. Pu, S.Y. Fu, H. Zhang, W. J. Sun, L. Li, C. J. Xiao, Y. Y. Feng, B. L. Giles, 123, J. Geophys. Res. (2018).5561-5570. https://doi.org/10.1029/2018JA025607

  19. H. Higaki, K. Fukata, K. Ito, H. Okamoto, Phys. Rev. E 81, 016401 (2010). https://doi.org/10.1103/PHYSREVE.81.016401

    Article  ADS  Google Scholar 

  20. I.A. Kotelnikov, I.S. Chernoshtanov, Phys. Plasmas 25(8), 082501 (2018). https://doi.org/10.1063/1.5036816

    Article  ADS  Google Scholar 

  21. G. Andresen, W. Bertsche, A. Boston, P.D. Bowe, C.L. Cesar, S. Chapman, M. Charlton, M. Chartier, A. Deutsch, J. Fajans et al., Phys. Rev. Lett. 98, 023402 (2007). https://doi.org/10.1103/PHYSREVLETT.98.023402

    Article  ADS  Google Scholar 

  22. J. Fajans, W. Bertsche, K. Burke, S.F. Chapman, D.P. van der Werf, Phys. Rev. Lett. 95, 155001 (2005). https://doi.org/10.1103/PhysRevLett.95.155001

    Article  ADS  Google Scholar 

  23. Non-neutral Plasma Physics VI, edited by M. Drewsen, U. Uggerhoj, and H. Knudsen (Addison-Wesley, Redwood City, CA, 1990), p. 117

  24. A.G. Shalashov, S.V. Golubev, E.D. Gospodchikov, D.A. Mansfeld, M.E. Viktorov, Plasma Phys. Controlled Fusion 54, 085023 (2012). https://doi.org/10.1088/0741-3335/54/8/085023

    Article  ADS  Google Scholar 

  25. R. Bingham, D.C. Speirs, B.J. Kellett, I. Vorgul, S.L. McConville, R.A. Cairns, A.W. Cross, A.D.R. Phelps, K. Ronald, Space Sci. Rev. 178, 695 (2013). https://doi.org/10.1007/978-1-4899-7413-6-22

    Article  ADS  Google Scholar 

  26. M.E. Viktorov, S.V. Golubev, E.D. Gospodchikov, I.V. Izotov, D.A. Mansfeld, A.G. Shalashov, Radiophys. Quantum Electron. 56, 216 (2013). https://doi.org/10.1007/s11141-013-9427-z

    Article  ADS  Google Scholar 

  27. B. Van Compernolle, J. Bortnik, P. Pribyl, W. Gekelman, M. Nakamoto, X. Tao, R.M. Thorne, Phys. Rev. Lett. 112, 145006 (2014). https://doi.org/10.1103/PhysRevLett.112.145006

    Article  ADS  Google Scholar 

  28. B. Van Compernolle, X. An, J. Bortnik, R.M. Thorne, P. Pribyl, W. Gekelman, Phys. Rev. Lett. 114, 245002 (2015)

    Article  ADS  Google Scholar 

  29. B. Van Compernolle, X. An, J. Bortnik, R.M. Thorne, P. Pribyl, W. Gekelman, Plasma Phys. Controlled Fusion 59, 014016 (2017)

    Article  ADS  Google Scholar 

  30. A.G. Shalashov, M.E. Viktorov, D.A. Mansfeld, S.V. Golubev, Phys. Plasmas 24, 032111 (2017). https://doi.org/10.1063/1.4978565

    Article  ADS  Google Scholar 

  31. A. Sabo, A.I. Smolyakov, P. Yushmanov, S. Putvinski, Phys. Plasmas 29, 052507 (2022). https://doi.org/10.1063/5.0088534

    Article  ADS  Google Scholar 

  32. H. Higaki, C. Kaga, K. Fukushima, H. Okamoto, Y. Nagata, Y. Kanai, Y. Yamazaki, New J. Phys. 19, 023016 (2017). https://doi.org/10.1088/1367-2630/aa5a45

    Article  ADS  Google Scholar 

  33. R.A. Lopez, V. Munoz, A.F. Vinas, J.A. Valdivia, Phys. Plasmas 22, 092115 (2015). https://doi.org/10.1063/1.4930266

    Article  ADS  Google Scholar 

  34. P.A. Andreev, Phys. Plasmas 22, 062113 (2015). https://doi.org/10.1063/1.4922662

    Article  ADS  Google Scholar 

  35. A.A. Gvozdev, E.V. Osokina, Theor. Math. Phys. 184, 1189 (2015). https://doi.org/10.1007/s11232-015-0326-7

    Article  Google Scholar 

  36. C. Kaga, Plasma Fusion Res. 12, 1401001 (2017). https://doi.org/10.1585/pfr.12.1401001

  37. M.J. Iqbal, W. Masood, H.A. Shah, N.L. Tsintsadze, Phys. Plasmas 24, 014503 (2017). https://doi.org/10.1063/1.4973830

    Article  ADS  Google Scholar 

  38. A.E. Dubinov, V.P. Tarakanov, Contrib. Plasm. Phys. 64, 4 (2022). https://doi.org/10.1002/ctpp.202100198

    Article  Google Scholar 

  39. F.P. Wang, H. Zhang, X.Y. Zhao, Z.Z. Li, W.S. Duan, L. Yang, Eur. Phys. J. D 73, 130 (2019). https://doi.org/10.1140/epjd/e2019-90587-0

    Article  ADS  Google Scholar 

  40. H. Zhang, F.P. Wang, M.M. Lin, X.Y. Zhao, W.S. Duan, L. Yang, Phys. Plasmas 26, 012501 (2019). https://doi.org/10.1063/1.5054025

    Article  ADS  Google Scholar 

  41. R. Courant, K. Friedrichs, H. Lewy, Math. Ann. 100, 32 (1928)

    Article  MathSciNet  Google Scholar 

  42. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)

    MATH  Google Scholar 

  43. J. Richard, Briggs. Phys. Rev. ST Accel. Beams. 9, 060401 (2006). https://doi.org/10.1103/PhysRevSTAB.9.060401

    Article  Google Scholar 

  44. P.A. Seidl, J.J. Barnard, A. Faltens, A. Friedman, Phys. Rev. ST Accel. Beams. 16, 024701 (2013). https://doi.org/10.1103/PhysRevSTAB.16.024701

    Article  ADS  Google Scholar 

  45. G. Lapenta, J. Comput. Phys. 231, 795 (2012). https://doi.org/10.1016/j.jcp.2011.03.035

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Some journals require declarations to be submitted in a standardised format. Please check the Instructions for Authors of the journal to which you are submitting to see if you need to complete this section. If yes, your manuscript must contain the following sections under the heading ‘Declarations’:

Funding

This work was supported by National Natural Science Foundation of China (Nos. 420655005, 11965019, 42004131).

Author information

Authors and Affiliations

Authors

Contributions

ZXW wrote the manuscript and prepared all figures. ZW and FPW did numerical simulations. HZ and SZ analyzed the results. WSD and XG proposed the physical idea and revised the article. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wen-Shan Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

Our contributions meet the ethical requirements of the COPE journal.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent for publication.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZX., Gou, XQ., Wang, FP. et al. Confinement of charged particles and non-neutral plasma in a magnetic mirror. Eur. Phys. J. D 76, 170 (2022). https://doi.org/10.1140/epjd/s10053-022-00500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00500-9

Keywords

Navigation