Skip to main content
Log in

Visualization of the surface distributions of reactive oxygen species on model human tissues treated by a He+O2 plasma jet

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The spatial–temporal distribution of reactive oxygen species (ROS) in human tissue is critical for the medical applications of cold plasma jet as it reflects the therapeutic range of cold plasma jet, but the mechanism for its formation is still unclear. To this end, KI-starch reagent was used to visualize the surface distributions of ROS on the model human tissues treated by a He + O2 plasma jet in this paper. It was found that the surface distribution of ROS was divided into two parts by a small donut-shaped of un-colored area. This un-colored area was resulted from the color fading of the model tissue, which might be induced by the AC electric field of the plasma jet and the plasma-generated reductive species. The colored area and the un-colored area had different trends with the working gas flow rate and the model tissue conductivity. The un-colored area increased with the expansion of the plasma plume and shrank with the increasing model tissue conductivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article].

References

  1. Y. Nomura, T. Takamatsu, H. Kawano, H. Miyahara, A. Okino, M. Yoshida, T. Azuma, J. Surg. Res. 219, 302 (2017)

    Article  Google Scholar 

  2. H. Aboubakr, U. Gangal, M. Youssef, S. Goyal, P. Bruggeman, J. Phys. D: Appl. Phys. 49, 204001 (2016)

    Article  ADS  Google Scholar 

  3. Z. Chen, G. Garcia, V. Arumugaswami, R. Wirz, Phys. Fluids 32, 111702 (2020)

    Article  ADS  Google Scholar 

  4. M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, B. Trink, Brit. J. Cancer 105, 1295 (2011)

    Article  Google Scholar 

  5. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J.V. Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  6. J. Duan, X. Lu, G. He, Phys. Plasmas 24, 073506 (2017)

    Article  ADS  Google Scholar 

  7. D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, Plasma Med. 2, 1 (2012)

    Article  Google Scholar 

  8. C. Chen, D.X. Liu, Z.C. Liu, A.J. Yang, H.L. Chen, G. Shama, M.G. Kong, Plasma Chem. Plasma Process. 34, 403 (2014)

    Article  ADS  Google Scholar 

  9. G. Collet, E. Robert, A. Lenoir, M. Vandamme, T. Darny, S. Dozias, C. Kieda, J.M. Pouvesle, Plasma Sour. Sci. Technol. 23, 012005 (2014)

    Article  ADS  Google Scholar 

  10. X. Liu, L. Gan, M. Ma, S. Zhang, J. Liu, H. Chen, D. Liu, X. Lu, J. Phys. D: Appl. Phys. 51, 075401 (2018)

    Article  ADS  Google Scholar 

  11. B. Ghimire, E.J. Szili, P. Lamichhane, R.D. Short, J.S. Lim, P. Attri, K. Masur, K.D. Weltmann, S.H. Hong, E.H. Choi, Appl. Phys. Lett. 114, 093701 (2019)

    Article  ADS  Google Scholar 

  12. N. Gaur, E.J. Szili, J.S. Oh, S.H. Hong, A. Michelmore, D.B. Graves, A. Hatta, R.D. Short, Appl. Phys. Lett. 107, 103703 (2015)

    Article  ADS  Google Scholar 

  13. T.T. He, D.X. Liu, H. Xu, Z.C. Liu, D.H. Xu, D. Li, Q.S. Li, M.Z. Rong, M.G. Kong, J. Phys. D: Appl. Phys. 49, 205204 (2016)

    Article  ADS  Google Scholar 

  14. T.T. He, D.X. Liu, Z.J. Liu, Z.C. Liu, Q.S. Li, M.Z. Rong, M.G. Kong, Appl. Phys. Lett. 111, 203702 (2017)

    Article  ADS  Google Scholar 

  15. T. Kawasaki, A. Sato, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, G. Uchida, K. Koga, M. Shiratani, Appl. Phys. Express. 9, 076202 (2016)

    Article  ADS  Google Scholar 

  16. T. Kawasaki, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, A. Sato, G. Uchida, K. Koga, M. Shiratani, J. Appl. Phys. 119, 173301 (2016)

    Article  ADS  Google Scholar 

  17. D.X. Liu, T.T. He, Z.J. Liu, S. Wang, Z.C. Liu, M.Z. Rong, M.G. Kong, Plasma Process. Polym. 15, e1800057 (2018)

    Article  Google Scholar 

  18. F. Mitsugi, M. Wago, R. Sakamoto, K. Nishida, T. Kawasaki, IEEE T. Plasma Sci. 49, 2141 (2021)

    Article  ADS  Google Scholar 

  19. M.J. Peters, G. Stinstra, M. Hendriks, Electromagnetics 21, 545 (2001)

    Article  Google Scholar 

  20. D.X. Liu, Z.C. Liu, A.J. Yang, D. Li, M.Z. Rong, H.L. Chen, M.G. Kong, Sci. Rep. 6, 23737 (2016)

    Article  ADS  Google Scholar 

  21. S.J. Klose, J. Ellis, F. Riedel, S. Schröter, K. Niemi, I.L. Semenov, K.D. Weltmann, T. Gans, D. O’Connell, J.H.V. Helden, Plasma Sour. Sci. Technol. 29, 125018 (2020)

    Article  ADS  Google Scholar 

  22. R. Tjahjanto, D. Galuh, S. Wardani, J. Pure App. Chem. Res. 1, 18 (2012)

    Article  Google Scholar 

  23. F. Mitsugi, S. Kusumegi, T. Kawasaki, IEEE T. Plasma Sci. 47, 1057 (2021)

    Article  ADS  Google Scholar 

  24. V.I. Parvulescu, M. Magureanu, P. Lukes. (Wiley-VCH Verlag GmbH & Co. KGaA, Gernamy, 2012)

  25. P. Rumbach, D.M. Bartels, R.M. Sankaran, D.B. Go, Nat. Commun. 6, 7248 (2015)

    Article  ADS  Google Scholar 

  26. P. Rumbach, D.M. Bartels, R.M. Sankaran, D.B. Go, J. Phys. D: Appl. Phys. 48, 424001 (2015)

    Article  Google Scholar 

  27. H. Zhang, J. Zhang, S. Xu, D. Liu, L. Guo, H. Li, J. Phys. D: Appl. Phys. 54, 385203 (2021)

    Article  ADS  Google Scholar 

  28. T. Shibaji, Y. Yasuhara, N. Oda, M. Umino, J. Control. Release 73, 37 (2003)

    Article  Google Scholar 

  29. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005)

    Article  ADS  Google Scholar 

  30. S. Yonemori, R. Ono, J. Phys. D: Appl. Phys. 47, 125401 (2014)

    Article  ADS  Google Scholar 

  31. E. Slikboer, P. Viegas, Z. Bonaventura, E. Garcia-Caurel, A. Sobota, A. Bourdon, O. Guaitella, Plasma Sour. Sci. Technol. 28, 095016 (2019)

    Article  ADS  Google Scholar 

  32. T. Verreycken, P. Bruggeman, C. Leys, J. Appl. Phys. 105, 083312 (2009)

    Article  ADS  Google Scholar 

  33. S. Wang, D.X. Liu, Z.F. Wang, Y.F. Liu, Q.S. Li, X.H. Wang, M.G. Kong, M.Z. Rong, Plasma Sour. Sci. Technol. 29, 065007 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52007035).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yuesheng Zheng.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., He, Y., Wang, Y. et al. Visualization of the surface distributions of reactive oxygen species on model human tissues treated by a He+O2 plasma jet. Eur. Phys. J. D 76, 155 (2022). https://doi.org/10.1140/epjd/s10053-022-00487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00487-3

Navigation