Skip to main content

Advertisement

Log in

Theoretical analysis of relativistic energy corrections, partition function and thermodynamic properties of spherically confined hydrogen atom

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The relativistic energy corrections for the spherically confined hydrogen with penetrable wall are calculated for various orbitals as a function of pressure and confinement radius. The relativistic corrections at high pressures of the order of 108–109 atm are found to be more than thousand times higher than the corresponding values for the free atom. For calculating the energy eigenvalues, the efficient Numerov method is adopted. The partition function and other thermodynamic properties are also calculated for temperature range 104 K to 1010 K at low (0–10 atm) and high pressures (104–108 atm). We investigate the behaviour of partition function and thermodynamic parameters graphically with pressure and temperature. We discuss the effect of high temperature and reduction of confinement radius on these parameters. The present study will be useful in Industrial applications like development of hydrogen fuel and in various physics branches such as in fusion and astrophysical plasma, condensed matter, statistical mechanics and also in other research areas where we encounter atoms which are subjected to high pressures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. T. Guillot, Planet. Sp. Sci. 47, 1183–1200 (1999)

    Article  ADS  Google Scholar 

  2. A. Hazra, S. Mondal, S. Bhattacharyya, J.K. Saha, K.D. Sen, Eur. Phys. J. D 75, 186 (2021)

    Article  ADS  Google Scholar 

  3. C. Martínez-Flores, R. Cabrera-Trujillo, Matter Radiat. Extrem. 5, 024401 (2020)

    Article  Google Scholar 

  4. S. Bhattacharyya, P.K. Mukherjee, B. Fricke, Phys. Lett. A 384, 126115 (2020)

    Article  Google Scholar 

  5. E. LeyKoo, S. Rubinstein, J. Chem. Phys. 71, 351 (1979)

    Article  ADS  Google Scholar 

  6. A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quantum Chem. 58, 115–175 (2009)

    Article  Google Scholar 

  7. A. Sommerfeld, H. Welker, Ann. Phys. 32, 56–65 (1938)

    Article  Google Scholar 

  8. Y.P. Varshni, J. Phys. B 30, L589–L593 (1997)

    Article  ADS  Google Scholar 

  9. Y.P. Varshni, J. Phys. B 31, 2849–2856 (1998)

    Article  ADS  Google Scholar 

  10. K.D. Sen, J. Garza, R. Vargas, N. Aquino, Phys. Lett. A 295, 299–304 (2002)

    Article  ADS  Google Scholar 

  11. C. Laughlin, B.L. Burrows, M. Cohen, J. Phys. B 35, 701–715 (2002)

    Article  ADS  Google Scholar 

  12. S. Ting-Yun, B. Cheng-Guang, L. Bai-Wen, Commun. Theor. Phys. 35, 195–200 (2001)

    Article  ADS  Google Scholar 

  13. L. Wu, S. Zhang, B. Li, Phys. Lett. A 384, 126033 (2020)

    Article  Google Scholar 

  14. S. Saha, J. Jose, Phys. Scr. 96, 094012 (2021)

    Article  ADS  Google Scholar 

  15. D. Shields, R. De, E. Ali, M.E. Madjet, S.T. Manson, H.S. Chakraborty, Eur. Phys. J. D 74, 191 (2020)

    Article  ADS  Google Scholar 

  16. P.C. Deshmukh, J. Jose, H.R. Varma, S.T. Manson, Eur. Phys. J. D 75, 166 (2021)

    Article  ADS  Google Scholar 

  17. V.I. Baranov, A.N. Solovev, Opt. Spectrosc. 100, 192 (2006)

    Article  ADS  Google Scholar 

  18. G.W.F. Drake, Can. J. Phys. 80, 1195 (2002)

    Article  ADS  Google Scholar 

  19. G.P. Gupta, A.Z. Msezane, Astrophys. J. Suppl. Ser. 130, 227 (2000)

    Article  ADS  Google Scholar 

  20. Y. Yakar, B. Çakır, A. Özmen, J. Lumin. 134, 778 (2013)

    Article  Google Scholar 

  21. A. Özmen, B. Çakır, Y. Yakar, J. Lumin. 137, 259 (2013)

    Article  Google Scholar 

  22. Y. Yakar, B. Çakır, C. Demir, A. Özmen, J. Lumin. 239, 118346 (2021)

    Article  Google Scholar 

  23. R. Dutt, A. Mukherjee, Y.P. Varshni, Phys. Lett. A 280, 318–324 (2001)

    Article  ADS  Google Scholar 

  24. D.G. Hummer, D. Mihalas, Astrophys. J. 331, 794–814 (1988)

    Article  ADS  Google Scholar 

  25. T. Sako, G.H.F. Diercksen, J. Phys. B 36, 1681–1702 (2003)

    Article  ADS  Google Scholar 

  26. U. Merkt, J. Huser, M. Wagner, Phys. Rev. B 43, 7320–7323 (1991)

    Article  ADS  Google Scholar 

  27. H.C.J. Graboske, D.J. Harwood, F.J. Rogers, Phys. Rev. 186, 210 (1969)

    Article  ADS  Google Scholar 

  28. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, Germany, 1977)

    Google Scholar 

  29. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistic of Nonideal Plasmas (Springer, Berlin, Germany, 2005)

    MATH  Google Scholar 

  30. M. Capitelli, D. Giordano, Phys. Rev. A 80, 032113 (2009)

    Article  ADS  Google Scholar 

  31. M.R. Zaghlou, Phys. Plasma 17, 062701 (2010)

    Article  ADS  Google Scholar 

  32. G. Singh, Int. J. Pure Appl. Phys. 13, 142 (2017)

    Google Scholar 

  33. G. Singh, R. Sharma, K. Singh, Phys. Plasma 22, 093516 (2015)

    Article  ADS  Google Scholar 

  34. G. Colonna, M. Capitelli, Spectrochim. Acta Part B 64, 863 (2009)

    Article  ADS  Google Scholar 

  35. G. D’Ammando, G. Colonna, L.D. Pietanza, M. Capitelli, Spectrochim. Acta Part B 65, 603 (2010)

    Article  ADS  Google Scholar 

  36. O. Cardona, E. Simmoneau, L. Crivellari, Rev. Mex. Fis. 51, 476 (2005)

    Google Scholar 

  37. O. Cardona, E. Simmoneau, L. Crivellari, Astrophys. J. 690, 1378 (2009)

    Article  ADS  Google Scholar 

  38. O. Cardona, M. Martnez-Arroyo, M.A.L. Opez-Castillo, Astrophys. J. 711, 239 (2010)

    Article  ADS  Google Scholar 

  39. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Joguet Detonations (Tech. Rep. NASA, Washington, D.C., 1976)

    Google Scholar 

  40. B.J. McBride, S. Gordon, M.A. Reno, “Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species”, Technical Memorandum TM-4513 (NASA, Washington, D.C., 1993)

    Google Scholar 

  41. L.V. Gurvich, I.V. Veyts, C.B. Alcock, V.S. Iorish, Thermodynamic Properties of Individual Substances (CRC, Boca Raton, FL, 1994)

    Google Scholar 

  42. Drawin HW and Felenbok P (1965) Data for plasmas in local thermodynamic equilibrium gauthier-villars.

  43. G. D’Ammando, G. Colonna, M. Capitelli, Phys. Of Plasmas 20, 032108 (2013)

    Article  ADS  Google Scholar 

  44. D. Saumon, G. Chabrier, H. Van Horn, Astrophys. J. Suppl. Ser. 99, 713 (1995)

    Article  ADS  Google Scholar 

  45. M.N. Guimaraes, F.V. Prudente, J. Phys. B 38, 2811 (2005)

    Article  ADS  Google Scholar 

  46. N. Aquino, G. Campoy, H.E. Montgomery Jr., Int. J. Quantum Chem. 107, 1548 (2007)

    Article  ADS  Google Scholar 

  47. S. Lumb, S. Lumb, V. Prasad, Indian J. Phys. 89, 13 (2015)

    Article  ADS  Google Scholar 

  48. J. Olsen, M.R. Godefroid, P.A. Jonsson, P.A. Malmquist, F.C. Froese, Phys. Rev. E 52, 4499 (1995)

    Article  ADS  Google Scholar 

  49. B.H. Bransden, C.J. Joachain, Physics of atoms and Molecules (Longman Scientific and Technical, England, 1983)

    Google Scholar 

Download references

Acknowledgements

Rachna Joshi is thankful to AND College administration for constant motivation and encouragement. Arun Goyal is thankful to Shyamlal college for providing facilities and infrastructure for carrying out this work.

Author contribution statement

All authors contributed equally to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Goyal, A., Kumar, P. et al. Theoretical analysis of relativistic energy corrections, partition function and thermodynamic properties of spherically confined hydrogen atom. Eur. Phys. J. D 76, 149 (2022). https://doi.org/10.1140/epjd/s10053-022-00484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00484-6

Navigation