Skip to main content
Log in

Orbital-resolved photoelectron momentum distributions of neon atoms in bichromatic elliptically polarized attosecond pulses

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically study the orbital-resolved photoelectron momentum distributions (PMDs) of neon atoms in time-delayed bichromatic elliptically polarized attosecond pulses by numerically solving the two-dimensional time-dependent Schrödinger equation (2D-TDSE). The active electron can reach the continuum state at the same momentum by absorbing \(m_{2}\) high-energetic photons or \(m_{1}\) low-energetic photons sequentially, and coherent electron wave packets (CEWPs) from these two pathways can interfere with each other. We show the PMDs exhibit an asymmetrical round when the single-photon ionization channel dominates, while spiral structures with the number of arms are \(m_{1}-m_{2}\) (\(m_{1}+m_{2}\)) for the corotating (counter-rotating) scheme. Furthermore, we find that interference patterns in PMDs are sensitive to the amplitude ratio, frequency combinations, dichroism, time delay and ellipticity of bichromatic elliptically polarized attosecond pulses, which offers possibilities for controlling the interference of CEWPs in atoms by shaping the bichromatic elliptically polarized attosecond pulses.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nat. (Lond.) 414, 509 (2001)

    Article  ADS  Google Scholar 

  2. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  3. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  4. M. Chini, K. Zhao, Z. Chang, Nat. Photon. 8, 178 (2014)

    Article  ADS  Google Scholar 

  5. B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O.D. Möcke, A. Suda, K. Midorikawa, E.J. Takahashi, Ultrafast Sci. 2021, 9828026 (2021)

    Article  ADS  Google Scholar 

  6. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacher, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nat. (Lond.) 419, 803 (2002)

    Article  ADS  Google Scholar 

  7. M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nat. (Lond.) 446, 627 (2007)

    Article  ADS  Google Scholar 

  8. M. Wu, S. Chen, S. Camp, K.J. Schafer, M.B. Gaarde, J. Phys. B 49, 062003 (2016)

    Article  ADS  Google Scholar 

  9. S. Gilbertson, M. Chini, X. Feng, S. Khan, Y. Wu, Z. Chang, Phys. Rev. Lett. 105, 263003 (2010)

    Article  ADS  Google Scholar 

  10. W. Chu, S.F. Zhao, C.D. Lin, Phys. Rev. A 84, 033426 (2011)

    Article  ADS  Google Scholar 

  11. C. Boeglin, E. Beaurepaire, V. Halté, V. López-Flores, C. Stamm, N. Pontius, H.A. Dürr, J.-Y. Bigot, Nat. (Lond.) 465, 458 (2010)

    Article  ADS  Google Scholar 

  12. R. Cireasa, A.E. Boguslavskiy, B. Pons, M.C.H. Wong, D. Descamps, S. Petit, H. Ruf, N. Thiré, A. Ferré, J. Suarez, J. Higuet, B.E. Schmidt, A.F. Alharbi, V. Blanchet, B. Fabre, S. Patchkovskii, O. Smirnova, Y. Mairesse, V.R. Bhardwaj, Nat. Phys. 11, 654 (2015)

    Article  Google Scholar 

  13. S. Beaulieu, A. Comby, B. Fabre, D. Descamps, A. Ferré, G. Garcia, R. Géneaux, F. Légaré, L. Nahon, S. Petit, T. Ruchon, B. Pons, V. Blanchet, Y. Mairese, Faraday Discuss. 194, 325 (2016)

    Article  ADS  Google Scholar 

  14. P.C. Huang, C. Hernández-García, J.T. Huang, P.Y. Huang, C.H. Lu, L. Rego, D.D. Hickstein, J.L. Ellis, A. Jaron-Becker, A. Becker, S.D. Yang, C.G. Durfee, L. Plaja, H.C. Kapteyn, M.M. Murnane, A.H. Kung, M.C. Chen, Nat. Photon. 12, 349 (2018)

    Article  ADS  Google Scholar 

  15. H.J. Lugt, Vortex Flow in Nature and Technology, 1st edn. (Wiley, New York, 1983)

    Google Scholar 

  16. M.W. Scheeler, W.M. van Rees, H. Kedia, D. Kleckner, W.T.M. Irvine, Science 357, 487 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Harris, C.A. Hill, J.M. Vaughan, Opt. Commun. 106, 161 (1994)

    Article  ADS  Google Scholar 

  18. P. Gregg, P. Kristensen, S. Ramachandran, Optica 2, 267 (2015)

    Article  ADS  Google Scholar 

  19. G. Spektor, D. Kilbane, K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.J.M.Z. Heringdorf, M. Orenstein, M. Aeschlimann, Science 355, 1187 (2017)

    Article  ADS  Google Scholar 

  20. M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nat. (Lond.) 435, 1047 (2005)

    Article  ADS  Google Scholar 

  21. I. Bialynicki-Birula, Z. Bialynicka-Birula, C. Sliwa, Phys. Rev. A 61, 032110 (2000)

    Article  ADS  Google Scholar 

  22. J.H. Macek, J.B. Sternberg, S.Y. Ovchinnikov, T.G. Lee, D.R. Schultz, Phys. Rev. Lett. 102, 143201 (2009)

    Article  ADS  Google Scholar 

  23. S.Y. Ovchinnikov, J.B. Sternberg, J.H. Macek, T.G. Lee, D.R. Schultz, Phys. Rev. Lett. 105, 203005 (2010)

    Article  ADS  Google Scholar 

  24. L.P.H. Schmidt, C. Goihl, D. Metz, H. Schmidt-Bocking, R. Dörner, S.Y. Ovchinnikov, J.H. Macek, D.R. Schultz, Phys. Rev. Lett. 112, 083201 (2014)

  25. J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, A.F. Starace, Phys. Rev. Lett 115, 113004 (2015)

    Article  ADS  Google Scholar 

  26. J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, A.F. Starace, Phys. Rev. A 94, 013408 (2016)

    Article  ADS  Google Scholar 

  27. D. Pengel, S. Kerbstadt, D. Johannmeyer, L. Englert, T. Bayer, M. Wollenhaupt, Phys. Rev. Lett. 118, 053003 (2017)

    Article  ADS  Google Scholar 

  28. D. Pengel, S. Kerbstadt, L. Englert, T. Bayer, M. Wollenhaupt, Phys. Rev. A 96, 043426 (2017)

    Article  ADS  Google Scholar 

  29. S. Kerbstadt, K. Eickhoff, T. Bayer, M. Wollenhaupt, Nat. Commun. 10, 658 (2019)

    Article  ADS  Google Scholar 

  30. K. Eickhoff, L. Englert, T. Bayer, M. Wollenhaupt, Front. Phys. 9, 675258 (2021)

    Article  Google Scholar 

  31. K. Eickhoff, L. Feld, D. Köhnke, L. Englert, T. Bayer, M. Wollenhaupt, J. Phys. B 54, 164002 (2021)

    Article  ADS  Google Scholar 

  32. J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, A.F. Starace, Phys. Rev. A 96, 013405 (2017)

    Article  ADS  Google Scholar 

  33. L. Geng, F. Cajiao Vélez, J.Z. Kamiński, L.Y. Peng, K. Krajewska, Phys. Rev. A 102, 043117 (2020)

    Article  ADS  Google Scholar 

  34. L. Geng, F. Cajiao Vélez, J.Z. Kamiński, L.Y. Peng, K. Krajewska, Phys. Rev. A 104, 033111 (2021)

    Article  ADS  Google Scholar 

  35. M. Li, G.Z. Zhang, X.L. Kong, T.Q. Wang, X. Ding, J.Q. Yao, Opt. Express 26, 878 (2018)

    Article  ADS  Google Scholar 

  36. M. Li, G.Z. Zhang, X. Ding, J.Q. Yao, Chin. Phys. Lett. 115, 036103 (2019)

    Google Scholar 

  37. Q. Zhen, H.D. Zhang, S.Q. Zhang, L. Ji, X.S. Liu, Chem. Phys. Lett. 738, 136885 (2020)

    Article  Google Scholar 

  38. Z. Qi, J.H. Chen, S.Q. Zhang, Z.J. Yang, X.S. Liu, Chin. Phys. B 30, 024203 (2021)

    Article  ADS  Google Scholar 

  39. L. Ji, W.W. Yu, S.Y. Han, Y.F. Han, Q. Zhen, S.Q. Zhang, X.S. Liu, Chem. Phys. Lett. 754, 137634 (2020)

    Article  Google Scholar 

  40. J.C. Jia, H.F. Cui, C.P. Zhang, J. Shao, J. Ma, X.Y. Miao, Chem. Phys. Lett. 725, 119 (2019)

    Article  ADS  Google Scholar 

  41. J. Guo, S.Q. Zhang, J. Zhang, S.P. Zhou, P.F. Guan, Laser Phys. 31, 065301 (2021)

    Article  ADS  Google Scholar 

  42. K.J. Yuan, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 93, 053425 (2016)

    Article  ADS  Google Scholar 

  43. K.J. Yuan, H. Lu, A.D. Bandrauk, J. Phys. B 50, 124004 (2017)

    Article  ADS  Google Scholar 

  44. S.Q. Zhang, Q. Zhen, Z.J. Yang, J. Zhang, A.H. Liu, K.J. Yuan, X.S. Liu, J. Guo, Chin. Phys. B 30, 043201 (2021)

    Article  Google Scholar 

  45. H.F. Cui, X.Y. Miao, Chin. Phys. B 29, 074203 (2020)

    Article  ADS  Google Scholar 

  46. M.Y. Ma, J.P. Wang, W.Q. Jing, Z. Guan, Z.H. Jiao, G.L. Wang, J.H. Chen, S.F. Zhao, Opt. Express 29, 438045 (2021)

    Google Scholar 

  47. I. Barth, M. Lein, J. Phys. B 47, 204016 (2014)

    Article  ADS  Google Scholar 

  48. I. Barth, O. Smirnova, Phys. Rev. A 87, 013433 (2013)

    Article  ADS  Google Scholar 

  49. D. Trabert, A. Hartung, S. Eckart, F. Trinter, A. Kalinin, M. Schöffler, LPh.H. Schmidt, T. Jahnke, M. Kunitski, R. Dörner, Phys. Rev. Lett. 120, 043202 (2018)

    Article  ADS  Google Scholar 

  50. M.-M. Liu, Y. Shao, M. Han, P. Ge, Y. Deng, C. Wu, Q. Gong, Y. Liu, Phys. Rev. Lett. 120, 013433 (2018)

    Google Scholar 

  51. S. Xu, Q. Zhang, X. Fu, X. Huang, X. Han, M. Li, W. Cao, P. Lu, Phys. Rev. A 102, 063128 (2020)

    Article  ADS  Google Scholar 

  52. P. Ge, Y. Fang, Z. Guo, X. Ma, X. Yu, M. Han, C. Wu, Q. Gong, Y. Liu, Phys. Rev. Lett. 126, 223001 (2021)

    Article  ADS  Google Scholar 

  53. I. Barth, O. Smirnova, Phys. Rev. A 88, 013401 (2013)

    Article  ADS  Google Scholar 

  54. H. Bethe, Intermediate Quantum Mechanics, Chap. 11 (CRC Press, New York, 1997)

    Google Scholar 

  55. K. Rzazewski, B. Piraux, Phys. Rev. A 47, R1612 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (12164044, 11864037, 12064023, 11765018); Project supported by the Science-Technology Foundation for Young Scientist of Gansu Province of China (Grant No. 20JR5RA373); the Natural Science Foundation of Gansu Province (Grant No. 20JR5RA209); the Scientific Research Program of the Higher Education Institutions of Gansu Province of China (Grant No. 2020A-125); and the Natural Science Foundation of Liaoning Province (No. 2020-BS-078).

Author information

Authors and Affiliations

Authors

Contributions

RW performed the numerical simulations, analyzed the results and wrote the manuscript. All the authors were involved in the improvement of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Song-Feng Zhao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RR., Ma, MY., Wang, JP. et al. Orbital-resolved photoelectron momentum distributions of neon atoms in bichromatic elliptically polarized attosecond pulses. Eur. Phys. J. D 76, 145 (2022). https://doi.org/10.1140/epjd/s10053-022-00471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00471-x

Navigation