Skip to main content
Log in

Kinetic energy distribution of the rescattering electrons from asymmetric \(\omega \)/2\(\omega \) pulses

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

When high intensity pulses are used to ionize an atom or molecule, the electrons produced can be driven back to the ionic core by the laser’s electric field, where they can collide with the ion, resulting to a plethora of phenomena such as high harmonic generation, non-sequential double ionization and more. Here, we consider ionization using an asymmetric \(\omega \)/2\(\omega \) pulse, and we study the dependence of the kinetic energy distribution of the returning electrons on the relative phase \(\phi \) and electric field amplitude ratio \(\gamma \) between the two components of the asymmetric pulse. We find that for a specific combination of \(\gamma \) and \(\phi \), the kinetic energy of the vast majority of the returning electrons which return to the ion, follows a sharp, nearly monochromatic distribution. We examine the effect of small variations of the asymmetric pulse parameters \(\gamma \) and \(\phi \), as well as the effect of pulse duration and multiple returns of the electron to the ionic core. We find that the kinetic energy distribution remains narrow for a variety of such conditions, demonstrating the experimental feasibility of the process. This way, \(\omega \)/2\(\omega \) asymmetric pulses can offer control over a variety of rescattering-related processes, such as high-harmonic generation, for which we give an example.

Graphical abstract

(a) Evolution of the kinetic energy distribution of the returning electrons as a function of the phase \(\phi \) between the \(\omega \) and 2\(\omega \) components of the asymmetric field. The amplitude ratio \(\gamma \) between the \(\omega \) and 2\(\omega \) components of the asymmetric field is 0.45. (b) Evolution of the HHG spectra as a function of \(\phi \). The ratio \(\gamma \) is 0.45 as in part (a)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no 365 associated data or the data will not be deposited. [Authors 366 comment: All data generated or analyzed during this study are included in this published article. This manuscript has associated data in a data repository.]

References

  1. J. Li, J. Lu, A. Chew, S. Han, J. Li, Y. Wu, H. Wang, S. Ghimire, Z. Chang, Nat. Commun. 11, 2748 (2020)

    Article  ADS  Google Scholar 

  2. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49(3), 2117–2132 (1994)

    Article  ADS  Google Scholar 

  3. A.S. Alnaser, T. Osipov, E.P. Benis, A. Wech, B. Shan, C.L. Cocke, X.M. Tong, C.D. Lin, Phys. Rev. Lett. 91(16), 163002 (2003)

    Article  ADS  Google Scholar 

  4. S. Li, D. Sierra-Costa, M.J. Michie, I. Ben-Itzhak, M. Dantus, Commun. Phys. 3, 35 (2020)

    Article  Google Scholar 

  5. S. Micheau, Z. Chen, A.T. Le, C.D. Lin, Phys. Rev. A 79(1), 013417 (2009)

    Article  ADS  Google Scholar 

  6. G. Porat, G. Alon, S. Rozen, O. Pedatzur, M. Krüger, D. Azoury, A. Natan, G. Orenstein, B.D. Bruner, M.J.J. Vrakking, N. Dudovich, Nat. Commun. 9, 2805 (2018)

    Article  ADS  Google Scholar 

  7. I. Madan, G.M. Vanacore, E. Pomarico, G. Berruto, R.J. Lamb, D. McGrouther, T.T.A. Lummen, T. Latychevskaia, F.J. García de Abajo, F. Carbone, Sci. Adv. 5 (2019)

  8. H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long, J.K. McIver, Phys. Rev. A 51(5), R3414–R3417 (1995)

    Article  ADS  Google Scholar 

  9. X. He, J.M. Dahlström, R. Rakowski, C.M. Heyl, A. Persson, J. Mauritsson, A. L’Huillier, Phys. Rev. A 82(3), 033410 (2010)

    Article  ADS  Google Scholar 

  10. F. de Morisson, C. Faria, M.L. Du, Phys. Rev. A 64(2), 023415 (2001)

    Article  ADS  Google Scholar 

  11. M. Protopapas, A. Sanpera, P.L. Knight, K. Burnett, Phys. Rev. A 52(4), R2527–R2530 (1995)

    Article  ADS  Google Scholar 

  12. E. Cormier, M. Lewenstein, Eur. Phys. J. D 12(2), 227–233 (2000)

    Article  ADS  Google Scholar 

  13. F. de Morisson, C. Faria, D.B. Milošević, G.G. Paulus, Phys. Rev. A 61(6), 063415 (2000)

    Article  ADS  Google Scholar 

  14. G.G. Paulus, W. Becker, H. Walther, Phys. Rev. A 52(5), 4043–4053 (1995)

    Article  ADS  Google Scholar 

  15. C.M. Kim, I.J. Kim, C.H. Nam, Phys. Rev. A 72(3), 033817 (2005)

    Article  ADS  Google Scholar 

  16. D. Charalambidis, P. Tzallas, E.P. Benis, E. Skantzakis, G. Maravelias, L.A.A. Nikolopoulos, A.P. Conde, G.D. Tsakiris, New J. Phys. 10, 025018 (2008)

    Article  ADS  Google Scholar 

  17. S. Eckart, M. Richter, M. Kunitski, A. Hartung, J. Rist, K. Henrichs, N. Schlott, H. Kang, T. Bauer, H. Sann, L.P.H. Schmidt, M. Schöffler, T. Jahnke, R. Dörner, Phys. Rev. Lett. 117(13), 133202 (2016)

    Article  ADS  Google Scholar 

  18. L. Barreau, K. Veyrinas, V. Gruson, S.J. Weber, T. Auguste, J.F. Hergott, F. Lepetit, CarrÃB, J.C. Houver, D. Dowek, P. Salières, Nat. Commun. 9 4727 (2018)

  19. P.B. Corkum, Phys. Rev. Lett. 71(13), 1994–1997 (1993)

    Article  ADS  Google Scholar 

  20. M.V. Ammosov, N.B. Delone, P K V. Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986)

    Google Scholar 

  21. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 85(4), 740–743 (2000)

    Article  ADS  Google Scholar 

  22. G.G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri, Nature 414, 182–184 (2001)

    Article  ADS  Google Scholar 

  23. P. Salières, B. Carré, L.L. Déroff, F. Grasbon, G.G. Paulus, H. Walther, R. Kopold, W. Becker, D.B. Milošević, A. Sanpera, M. Lewenstein, Science 292, 902–905 (2001)

    Article  ADS  Google Scholar 

  24. M.A. Walker, P. Hansch, L.D. Van Woerkom, Phys. Rev. A 57(2), R701–R704 (1998)

    Article  ADS  Google Scholar 

  25. N.A. Hart, J. Strohaber, G. Kaya, N. Kaya, A.A. Kolomenskii, H.A. Schuessler, Phys. Rev. A 89(5), 053414 (2014)

    Article  ADS  Google Scholar 

  26. J. Wiese, J.F. Olivieri, A. Trabattoni, S. Trippel, J. Küpper, New J. Phys. 21, 083011 (2019)

    Article  ADS  Google Scholar 

  27. K. Amini, J. Biegert, F. Calegari, A. Chacón, M.F. Ciappina, A. Dauphin, D.K. Efimov, F.C.F. de Morisson, K. Giergiel, P. Gniewek, A.S. Landsman, M. Lesiuk, M. Mandrysz, A.S. Maxwell, R. Moszyński, L. Ortmann, J.A. Pérez-Hernández, A. Picón, E. Pisanty, J. Prauzner-Bechcicki, K. Sacha, N. Suárez, A. Zaïr, J. Zakrzewski, M. Lewenstein, Rep. Prog. Phys. 82, 116001 (2019)

    Article  ADS  Google Scholar 

  28. T. Shaaran, F.C.F. de Morisson, J. Mod. Opt. 57, 984–991 (2010)

    Article  ADS  Google Scholar 

  29. N. Karpowicz, X.C. Zhang, Phys. Rev. Lett. 102(9), 093001 (2009)

    Article  ADS  Google Scholar 

  30. R.A. Akhmedzhanov, I.E. Ilyakov, V.A. Mironov, E.V. Suvorov, D.A. Fadeev, B.V. Shishkin, J. Exp. Theor. Phys. 109, 370 (2009)

    Article  ADS  Google Scholar 

  31. T. Zuo, A. Bandrauk, P. Corkum, Chem. Phys. Lett. 259, 313–320 (1996)

    Article  ADS  Google Scholar 

  32. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H.C. Bandulet, H. Pépin, J.C. Kieffer, R. Dörner, D.M. Villeneuve, P.B. Corkum, Science 320, 1478–1482 (2008)

    Article  ADS  Google Scholar 

  33. W. Quan, X. Hao, X. Hu, R. Sun, Y. Wang, Y. Chen, S. Yu, S. Xu, Z. Xiao, X. Lai, X. Li, W. Becker, Y. Wu, J. Wang, X. Liu, J. Chen, Phys. Rev. Lett. 119(24), 243203 (2017)

    Article  ADS  Google Scholar 

  34. D. Ray, B. Ulrich, I. Bocharova, C. Maharjan, P. Ranitovic, B. Gramkow, M. Magrakvelidze, S. De, I.V. Litvinyuk, A.T. Le, T. Morishita, C.D. Lin, G.G. Paulus, C.L. Cocke, Phys. Rev. Lett. 100(14), 143002 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Benis for reading the manuscript and providing with useful discussion.

Author information

Authors and Affiliations

Authors

Contributions

A. A. performed calculations presented in the manuscript. D. S. performed calculations and wrote the manuscript.

Corresponding author

Correspondence to Dimitris Sofikitis.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanasopoulos, A., Sofikitis, D. Kinetic energy distribution of the rescattering electrons from asymmetric \(\omega \)/2\(\omega \) pulses. Eur. Phys. J. D 76, 138 (2022). https://doi.org/10.1140/epjd/s10053-022-00468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00468-6

Navigation