Skip to main content
Log in

Thermally tunable THz polarization converter based on Babinet-inverted metasurface

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The polarization converters are imperative components in modern optical system, but its functionality is usually statically adjustable due to the constraint of materials. Herein, a Babinet InSb metasurface composed of C-shape resonators is proposed with its anisotropic amplitudes and phases of reflected light along two orthogonal axes can be tailored by adjusting external temperature in the THz range. The simulation results show that designer metasurface is a 90° polarization rotator with the polarization conversion ratio up to 97% at 1.36 THz when temperature T = 298 K. By tuning the external temperature from 280 to 320 K, the polarization conversion functionality can be realized or eliminated near form 1.1 THz to 1.7 THz. The regulation mechanism of the proposed tunable converter is attributed to the electromagnetic coupling pattern between the upper C-shape metasurface and the metallic substrate at different external temperature. The results appear to hold promise for wave retarder devices and modern optical systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated or analyzed during this study are included in this published article.]

References

  1. J.Y. Chin, M. Lu, T.J. Cui, Appl. Phys. Lett. 93, 251903 (2008). https://doi.org/10.1063/1.3054161

    Article  ADS  Google Scholar 

  2. M. Born and E. Wolf, Principles of Optics. (1999) 461: 401–424.

  3. E. Hecht, Optics 2nd Edition (Addison-Wesley series in physics, 2002).

  4. H. Markovich, I.L. Shishkin, N. Hendler, P. Ginzburg, Nano Lett. 18, 5024–5029 (2018). https://doi.org/10.1021/acs.nanolett.8b01844

    Article  ADS  Google Scholar 

  5. K. Li, Y. Guo, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Opt. Express 25, 21419–21427 (2017). https://doi.org/10.1364/OE.25.021419

    Article  ADS  Google Scholar 

  6. N. Yu, F. Aieta, P. Genevet, M.A. Kats, Z. Gaburro, F. Capasso, Nano Lett. 12, 6328–6333 (2012). https://doi.org/10.1021/nl303445u

    Article  ADS  Google Scholar 

  7. X.J. Shang, X. Zhai, J. Yue, X. Luo, J.P. Liu, X.P. Zhu, H.G. Duan, L.L. Wang, Opt. Express 25, 14406–14413 (2017). https://doi.org/10.1364/OE.25.014406

    Article  ADS  Google Scholar 

  8. Y. Zhang, J.Z. Zhu, C.P. Huang, S.J. Ma, J. Lightwave Technol. 35, 4817–4823 (2017)

    Article  ADS  Google Scholar 

  9. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, M. Wegener, Science 325, 1513–1515 (2009)

    Article  ADS  Google Scholar 

  10. K.A.N. Duerloo, M.T. Ong, E.J. Reed, J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436

    Article  Google Scholar 

  11. I.V. Shadrivov, S.K. Morrison, Y.S. Kivshar, Opt. Express 14, 9344–9349 (2006). https://doi.org/10.1364/OE.14.009344

    Article  ADS  Google Scholar 

  12. K.L. Koshelev, A.A. Bogdanov, Phys. Rev. B 92, 085305 (2015). https://doi.org/10.1103/PhysRevB.92.085305

    Article  ADS  Google Scholar 

  13. Y. Li, Y. Su, X. Zhai, L. Wang, EPL 125, 34002 (2019)

    Article  ADS  Google Scholar 

  14. K.K. Du, Q. Li, Y.B. Lyu, J.C. Ding, Y. Lu, Z.Y. Cheng, M. Qiu, Light Sci. Appl. 6, e16194–e16194 (2017). https://doi.org/10.1038/lsa.2016.194

    Article  Google Scholar 

  15. S. Bonora, U. Bortolozzo, S. Residori, R. Balu, P.V. Ashrit, Opt. Lett. 35, 103–105 (2010). https://doi.org/10.1364/OL.35.000103

    Article  ADS  Google Scholar 

  16. J. Hiltunen, J. Puustinen, A. Sitomaniemi, S. Pearce, M. Charlton, J. Lappalainen, Appl. Phys. Lett. 102, 121111 (2013). https://doi.org/10.1063/1.4798831

    Article  ADS  Google Scholar 

  17. J. Liang, L. Hou, J. Li, J. Opt. Soc. Am. B 33, 1075–1080 (2016). https://doi.org/10.1364/JOSAB.33.001075

    Article  ADS  Google Scholar 

  18. X.J. Shang, L. Xu, H. Yang, H. He, Q. He, Y. Huang, L. Wang, New J. Phys. 22, 063054 (2020). https://doi.org/10.1088/1367-2630/ab9428/meta

    Article  ADS  Google Scholar 

  19. H.R. He, X.J. Shang, L. Xu, J.J. Zhao, W.Y. Cai, J. Wang, C.J. Zhao, L.L. Wang, Opt. Express 28, 4563–4570 (2020). https://doi.org/10.1364/OE.385900

    Article  ADS  Google Scholar 

  20. B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, L.L. Wang, J. Appl. Phys. 117, 014504 (2015). https://doi.org/10.1063/1.4905261

    Article  ADS  Google Scholar 

  21. J.A. Sanchez-Gil, J.G. Rivas, Phys. Rev. B 73, 205410 (2006). https://doi.org/10.1103/PhysRevB.73.205410

    Article  ADS  Google Scholar 

  22. P.M. Van den Berg, J.C.M. Borburgh, Appl. Phys. 3, 55–60 (1974). https://doi.org/10.1007/BF00892334

    Article  ADS  Google Scholar 

  23. S.C. Howells, L.A. Schlie, Appl. Phys. Lett. 69, 550 (1996). https://doi.org/10.1063/1.117783

    Article  ADS  Google Scholar 

  24. X.J. Shang, X. Zhai, L.L. Wang, M.D. He, Q. Li, X. Luo, H.G. Duan, Appl. Phys. Express 10, 052602 (2017)

    Article  ADS  Google Scholar 

  25. X.J. Shang, H.R. He, H. Yang, Q. He, L.L. Wang, Opt. Commun. 449, 8–12 (2019). https://doi.org/10.1016/j.optcom.2019.05.033

    Article  ADS  Google Scholar 

  26. H.Y. Chen, J.F. Wang, H. Ma, S.B. Qu, J.Q. Zhang, Z. Xu, A.X. Zhang, Chin. Phys. B. 24(1), 014201 (2015)

    Article  ADS  Google Scholar 

  27. W. Luo, S. Chen, L. Chen, H.L. Li, P.C. Miao, H.Y. Gao, Z.L. Hu, M. Li, Opt. Express 25, 12733–12742 (2017). https://doi.org/10.1364/OE.25.012733

    Article  ADS  Google Scholar 

  28. Q.M. Wang, B. Li, X. Yan, X.N. Zhang, F. Wang, T. Suzuki, Y. Ohishi, T.L. Cheng, Opt. Commun. 510, 127871 (2022). https://doi.org/10.1016/j.optcom.2021.127871

    Article  Google Scholar 

  29. P. Yu, J.X. Li, C.C. Tang, H. Cheng, Z.C. Liu, Z.C. Li, Z. Liu, C.Z. Gu, J.J. Li, S.Q. Chen, J.G. Tian, Light Sci. Appl. 5, e16096 (2016). https://doi.org/10.1038/lsa.2016.96

    Article  ADS  Google Scholar 

  30. J. Zhao, C. Ouyang, X. Chen, Y. Li, C. Zhang, L. Feng, B. Jin, J. Ma, Y. Liu, S. Zhang, Q. Xu, Opt. Express 29(14), 21738–21748 (2021)

    Article  ADS  Google Scholar 

  31. D. Wang, Y. Gu, Y. Gong, C.W. Qiu, M. Hong, Opt. Express. 23(9), 11114–11122 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author Qian He and Xiongjun Shang acknowledge the Natural Science Foundation of Hunan province for the research fellowship. Author Chenlei Xu, Kaipeng Gao, Yuanhang Chen and Xiongjun Shang acknowledge Hunan University Students Innovation and Entrepreneurship Training program for the research fellowship.

Funding

This work was supported by the Natural Science Foundation of Hunan province under Grant Nos. 2020JJ5565, 2020JJ5601; Hunan University Students Innovation and Entrepreneurship Training program under Grant No. S2021105360055.

Author information

Authors and Affiliations

Authors

Contributions

JO and CX developed the theory and performed the simulations. XS supervised the findings of this work. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Xiongjun Shang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This is an observational numerical study. No ethical approval is required.

Consent to participate

No consent is required.

Consent to publish

This manuscript does not contain any individual person’s data in any form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, J., Xu, C., Yang, Y. et al. Thermally tunable THz polarization converter based on Babinet-inverted metasurface. Eur. Phys. J. D 76, 124 (2022). https://doi.org/10.1140/epjd/s10053-022-00455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00455-x

Navigation