Skip to main content
Log in

Measurement of the temperature dependency of the linewidths and amplitudes of the sub-Doppler resonances of the 87Rb D2 line with π (π) polarized pump (probe) laser beams

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of the ambient temperature of the 87Rb atoms on the linewidths and amplitudes of the F = 1 → F/ = 0,1,2, F = 2 → F/ = 1,2,3 and crossover resonances of the 87Rb D2 line were measured via ππ polarized pump (probe) laser beams with the saturation absorption spectroscopy. The measurements were performed with high precision and accuracy by using the heterodyne beat measurement technique. The linewidth and amplitude measurements have been done with an inaccuracy of fewer than 1.1 MHz and 0.3 mV, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has no associated data or the data will not be deposited. All data generated during this study are contained in this published article.]

References

  1. Y. Ovchinnikov, M. Giuseppe, Metrologia (2011). https://doi.org/10.1088/0026-1394/48/3/003

    Article  Google Scholar 

  2. J. Vanier, Appl B Phys (2005). https://doi.org/10.1007/s00340-005-1905-3

    Article  Google Scholar 

  3. G.S. Pati, R. Tripathi, R.S. Grewal, M. Pulido, R.A. Depto, Phys. Rev. A. (2021). https://doi.org/10.1103/PhysRevA.104.033116

    Article  Google Scholar 

  4. T.J. Quinn, Metrologia (2003). https://doi.org/10.1088/0026-1394/40/2/316

    Article  Google Scholar 

  5. Elgin JD, Heavner TP, Kitching J, Donley EA, Denney J, Salim EA (2019) Appl. Phys. Lett. https://doi.org/10.1063/1.5087119

  6. S. Micalizio, F. Levi, C.E. Calosso, M. Gozzelino, A. Godone, GPS Solutions (2021). https://doi.org/10.1007/s10291-021-01136-9

    Article  Google Scholar 

  7. S.H. Asadpour, J. Appl. Phys. (2016). https://doi.org/10.1063/1.4939776

    Article  Google Scholar 

  8. S.H. Asadpour, A. Panahpour, M. Jafari, Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12221-9

    Article  Google Scholar 

  9. S. Asadpour, H.R. Soleimani, Laser Phys. Lett. (2015). https://doi.org/10.1088/1612-2011/13/1/015204

    Article  Google Scholar 

  10. S. Pustelny, V. Schultze, D. Budker, Rev. Sci. Instrum. (2016). https://doi.org/10.1063/1.4952962

    Article  Google Scholar 

  11. S. Chakrabarti, B. Ray, P.N. Ghosh, Eur J. D Phys (2007). https://doi.org/10.1140/epjd/e2007-00038-4

    Article  Google Scholar 

  12. M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, E. Tarleton, I.G. Hughes, Phys Rev A. (2006). https://doi.org/10.1103/PhysRevA.73.062509

    Article  Google Scholar 

  13. C. Wieman, T.W. Hänsch, Phys Lett Rev (1976). https://doi.org/10.1103/PhysRevLett.36.1170

    Article  Google Scholar 

  14. E. Şahin, Appl. Phys. B (2021) https://link.springer.com/article/10.1007%2Fs00340-021-07697-4

  15. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B (1983). https://doi.org/10.1007/BF00688820

    Article  Google Scholar 

  16. W. Demtröder Laser Spectroscopy Basic concepts and Instrumentation, second enlarged ed. (Springer, Verlag Berlin Heidelberg New york, 1996), pp.444–452

  17. D.A. Smith, I.G. Hughes, Am J Phys. (2004). https://doi.org/10.1119/1.1652039

    Article  Google Scholar 

  18. C. Affolderbach, G. Mileti, Rev. Sci. Instrum. (2005). https://doi.org/10.1063/1.1979493

    Article  Google Scholar 

  19. M. Gorris-Neveux, P. Monnot, M. Fichet, M. Ducloy, R. Barbé, J.C. Keller, Opt Commun. (1997). https://doi.org/10.1016/S0030-4018(96)00559-7

    Article  Google Scholar 

  20. N. Papageorgiou, M. Fichet, V. Sautenkov, D. Bloch, and M. Ducloy Laser Physics 4.2 (1994)

  21. R. Walkup, B. Stewart, D.E. Pritchard, Phys Rev A. (1984). https://doi.org/10.1103/PhysRevA.29.169

    Article  Google Scholar 

  22. S. Nakayama, Jpn. J. Appl. Phys. (1985). https://doi.org/10.1143/JJAP.23.879

    Article  Google Scholar 

  23. J.A.R. Griffith, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1982) https://doi.org/10.1098/rsta.1982.0130

  24. Steck D A 2001 Rubidium 87 D Line Data https://steck.us/alkalidata/rubidium87numbers.1.6.pdf Accessed 27 April 2022

  25. U. Volz, H. Schmoranzer, Phys. Scr. (1996). https://doi.org/10.1088/0031-8949/1996/T65/007

    Article  Google Scholar 

  26. U.D. Rapol, A. Wasan, V. Natarajan, Phys. Rev (2003). https://doi.org/10.1103/PhysRevA.67.053802

    Article  Google Scholar 

  27. Y. Zhu, T.N. Wasserlauf, Phys. A Rev. (1996). https://doi.org/10.1103/PhysRevA.54.3653

    Article  Google Scholar 

  28. G.P. Barwood, P. Gill, W.R.C. Rowley, Appl. B Phys. (1991). https://doi.org/10.1007/BF00330229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersoy Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, E. Measurement of the temperature dependency of the linewidths and amplitudes of the sub-Doppler resonances of the 87Rb D2 line with π (π) polarized pump (probe) laser beams. Eur. Phys. J. D 76, 119 (2022). https://doi.org/10.1140/epjd/s10053-022-00444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00444-0

Navigation