Skip to main content
Log in

Optimizing chirped laser pulse parameters for enhancing electron energy in a preformed ion channel

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The direct laser acceleration (DLA) of electrons in a preformed ion channel is examined theoretically using a chirped circularly polarized (CP) laser pulse. The electron acceleration and energy gain from the direct laser beam are enhanced by the effects of linear frequency chirp and the electrostatic space charge field created in the ion channel. The electron trapping and acceleration is strengthened by the frequency chirped CP laser pulse within the created ion cavity. The presence of a preformed ion channel, on the other hand, confines oscillatory electron motion and injects it into the accelerating fields of the laser. This provides a strong betatron resonance between the electrons and electric fields of laser pulse inside the plasma-ion cavity. The chirped CP laser pulse appears to get more energy for electrons than the transformed limited laser pulse when the parameters of the chirped laser pulse and the density in the preformed ion channel are tuned. This study with a chirped CP laser pulses added a new dimension to the DLA mechanisms in a plasma-ion channel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. F.V. Hartemann, E.C. Landahl, A.L. Troha Jr., J.R. Van Meter, H.A. Baldis, R.R. Freeman, N.C.L. LuhmannSong, A.K. Kerman, D.U.L. Yu, The chirped-pulse inverse free-electron laser: a high-gradient vacuum laser accelerator. Phys. Plasmas 6(10), 4104–4110 (1999)

    Article  ADS  Google Scholar 

  2. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur, K.J. Boller, Effect of frequency variation on electromagnetic pulse interaction with charges and plasma. Phys. Plasmas 12, 062116 (2005)

    Article  ADS  Google Scholar 

  3. H.S. Ghotra, N. Kant, Electron acceleration to GeV energy by a chirped laser pulse in vacuum in the presence of azimuthal magnetic field. Appl. Phys. B Lasers Opt. 120(1), 141–147 (2015)

    Article  ADS  Google Scholar 

  4. S.R. Bobbili, P. Naik, V. Arora, H. Singhal, U. Chakravarty, R.A. Khan, P.D. Gupta, K. Nakajima, T. Kameshima, Initial experiments on laser-based electron acceleration at RRCAT, Indore. IEEE Trans. Plasma Sci. 36(4), 1694–1698 (2008)

    Article  ADS  Google Scholar 

  5. C. Diplasu, G. Giubega, R. Ungureanu, G. Cojocaru, M. Serbanescu, A. Marcu, E. Stancu, A. Achim, M. Zamfirescu, Commissioning experiment on laser-plasma electron acceleration in supersonic gas jet at CETAL-PW laser facility. Roman. Rep. Phys. 73, 401 (2021)

    Google Scholar 

  6. P.K. Singh, F.Y. Li, C.K. Huang, A. Moreau, R. Hollinger, A. Junghans, A. Favalli, C. Calvi, S. Wang, Y. Wang, H. Song, J.J. Rocca, R.E. Reinovsky, S. Palaniyappan, Vacuum laser acceleration of super-ponderomotive electrons using relativistic transparency injection. Nat. Commun. 13, 54 (2022)

    Article  ADS  Google Scholar 

  7. E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33(11), 1879–1914 (1997)

    Article  ADS  Google Scholar 

  8. P. Gibbon, F. Jakober, P. Monot, T. Auguste, Experimental study of relativistic self-focusing and self-channeling of an intense laser pulse in an underdense plasma. IEEE Trans. Plasma Sci. 24(2), 343–350 (1996)

    Article  ADS  Google Scholar 

  9. J. Ferri, X. Davoine, S.Y. Kalmykov, A. Lifschitz, Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions. Phys. Rev. Accel. Beams 19, 101301 (2016)

    Article  ADS  Google Scholar 

  10. J. Mohammed, H.S. Ghotra, R. Kaur, H.Y. Hafeez, N. Kant, Electron Acceleration in Bubble Regime. AIP Conf. Proc. 1860, 020013 (2017)

    Article  Google Scholar 

  11. T. Wang, V. Khudik, A. Arefiev, G. Shvets, Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses. Phys. Plasmas 26, 083101 (2019)

    Article  ADS  Google Scholar 

  12. A.V. Arefiev, B.N. Breizman, M. Schollmeier, V.N. Khudik, Parametric amplification of laser-driven electron acceleration in underdense plasma. Phys. Rev. Lett. 108, 145004 (2012)

    Article  ADS  Google Scholar 

  13. C.B. Schroeder, E. Esarey, C.G.R. Geddes, C.S. Tóth, B.A. Shadwick, J. van Tilborg, J. Faure, W.P. Leemans, Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10, 2039–2046 (2003)

    Article  ADS  Google Scholar 

  14. H.S. Ghotra, N. Kant, Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction. Laser Phys. Lett. 15, 066001 (2018)

    Article  ADS  Google Scholar 

  15. H.S. Ghotra, N. Kant, Multi-GeV electron acceleration by a periodic frequency chirped radially polarized laser pulse in vacuum. Laser Phys. Lett. 13, 065402 (2016)

    Article  ADS  Google Scholar 

  16. H.S. Ghotra, N. Kant, Electron acceleration by a chirped laser pulse in vacuum under influence of magnetic field. Opt. Rev. 22(4), 539–543 (2015)

    Article  Google Scholar 

  17. Extreme Light Infrastructure (ELI)—Beamlines. http://www.eli-beams.eu/en/research/laser-technology/nonlinear-laser-amplification

  18. P. Jha, P. Kumar, Electron trajectories and gain in free electron laser with ion channel guiding. IEEE Trans. Plasma Sci. 24, 1359 (1996)

    Article  ADS  Google Scholar 

  19. N.E. Andreev, L.M. Gorbunov, V.I. Kirsanov, K. Nakajima, A. Ogata, Structure of the wake field in plasma channels. Phys. Plasmas 4, 1145–1153 (1997)

    Article  ADS  Google Scholar 

  20. B.Z. Djordjevic, C. Benedetti, C.B. Schroeder, E. Esarey, W.P. Leemans, Control of transverse wakefields via phase-matched laser modes in parabolic plasma channels. Phys. Plasmas 26, 013107 (2019)

    Article  ADS  Google Scholar 

  21. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  22. A.P.L. Robinson, A.V. Arefiev, V.N. Khudik, The effect of superluminal phase velocity on electron acceleration in a powerful electromagnetic wave. Phys. Plasmas 22, 083114 (2015)

    Article  ADS  Google Scholar 

  23. J.D. Lawson, Lasers and accelerators. IEEE Trans. Nucl. Sci. 26, 4217 (1979)

    Article  ADS  Google Scholar 

  24. P. Sprangle, E. Esarey, J. Krall, Laser driven electron acceleration in vacuum, gases, and plasmas. Phys. Plasmas 3, 2183–2190 (1996)

    Article  ADS  Google Scholar 

  25. J.P. Palastro, T.M. Antonsen, S. Morshed, A.G. York, H.M. Milchberg, Pulse propagation and electron acceleration in a corrugated plasma channel. Phys. Rev. E 77, 036405 (2008)

    Article  ADS  Google Scholar 

  26. Y.I. Salamin, H.B. Benaoum, N.M. Jisrawi, Electron acceleration by a binomially chirped laser pulse. Eur. Phys. J. Spec. Top. 230, 4175–4181 (2021)

    Article  Google Scholar 

  27. A.V. Arefiev, N. Khudik, A.P.L. Robinson, G. Shvets, L. Willingale, M. Schollmeie, Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas. Phys. Plasmas 23, 056704 (2016)

    Article  ADS  Google Scholar 

  28. M. Akhyani, F. Jahangiri, A.R. Niknam, R. Massudi, Optimizing chirped laser pulse parameters for electron acceleration in vacuum. J. Appl. Phys. 118, 183106 (2015)

    Article  ADS  Google Scholar 

  29. J.F. Hua, Y.K. Hob, Y.Z. Lina, N. Cao, Acceleration ofelectron bunches by intense laser pulse in vacuum. Nucl. Inst. Methods Phys. Res. A 508, 211–219 (2003)

    Article  ADS  Google Scholar 

  30. V.N. Khudik, X. Zhang, T. Wang, G. Shvets, Far-field constant-gradient laser accelerator of electrons in an ion channel. Phys. Plasmas (2018). https://doi.org/10.1063/1.5036967

    Article  Google Scholar 

  31. M. Vranic, R.A. Fonseca, L.O. Silva, Extremely intense laser-based electron acceleration in a plasma channel. Plasma Phys. Control Fusion 60, 034002 (2018)

    Article  ADS  Google Scholar 

  32. N.M. Jisrawi, B.J. Galow, Y.I. Salamin, Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse. Laser Part. Beams 32(4), 671–680 (2014)

    Article  ADS  Google Scholar 

  33. M. Kaur, D.N. Gupta, Electron acceleration by a radially polarized laser pulse in an ion channel. IEEE Trans. Plasma Sci. 45(10), 2841–2847 (2017)

    Article  ADS  Google Scholar 

  34. M. Asri, Acceleration of electron by an Azimuthally Polarized laser pulse propagating through an Ion Channel. IEEE Trans. Plasma Sci. 49(6), 1755–1762 (2021)

    Article  ADS  Google Scholar 

  35. R. Jeet, H.S. Ghotra, A. Kumar, N. Kant, Electron acceleration by a tightly focused laser pulse in an ion channel. Eur. Phys. J. D 75, 268 (2021)

    Article  ADS  Google Scholar 

  36. N.A. Bobrova, P.V. Sasorov, C. Benedetti, S.S. Bulanov, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, Laser-heater plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703 (2013)

    Article  ADS  Google Scholar 

  37. K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, M. Baine, Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 4047–4050 (1997)

    Article  ADS  Google Scholar 

  38. Y.I. Salamin, S. Carbajo, A simple model for the fields of a chirped laser pulse with application to electron laser acceleration. Front. Phys. 7, 2 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjit Singh Ghotra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghotra, H.S. Optimizing chirped laser pulse parameters for enhancing electron energy in a preformed ion channel. Eur. Phys. J. D 76, 111 (2022). https://doi.org/10.1140/epjd/s10053-022-00441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00441-3

Navigation