Skip to main content
Log in

Theoretical study of the recoil-ion momentum distribution for single-electron capture in fast \(B^{5+}-He\) collisions

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The first-order Coulomb–Born  approximation with the correct boundary conditions is used to investigate the recoil-ion momentum distribution of single-electron capture in fast collision of the fully stripped ions with the ground-state helium-like atoms. To this end, both the frozen core three-body (3B) and the active electron four-body (4B) versions of the theory are developed to calculate the post and prior transition amplitudes. The calculations are performed for the energetic collision of fully stripped boron ions with helium atoms as an example, and the obtained results are compared to the experimental data as well as the results of the other theories. The comparison shows that the 3B theory provides a reasonable description of the recoil-ion momentum distribution in shape but not in magnitude. However, there is a considerable difference between the results obtained from the prior and post forms of this formulation. Also, although the 4B model is closer to the reality of the problem, its results deviate significantly from the measurements, both in magnitude and shape.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data depicted in Figs. 2-4, which are obtained from the theoretical models presented in this article, are preferably provided to the readers in response to the reasonable requests.]

References

  1. M. Schulz, D.H. Madison, Int. J. Mod. Phys. A 21, 3649 (2006)

    Article  ADS  Google Scholar 

  2. M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature 422, 48 (2003)

    Article  ADS  Google Scholar 

  3. T.N. Rescigno, M. Baertschy, W.A. Isaacs, C. McCurdy, Science 286, 2474 (1999)

    Article  Google Scholar 

  4. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, LPh.H. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  5. N.V. Maydanyuk, A. Hasan, M. Foster, B. Tooke, E. Nanni, D.H. Madison, M. Schulz, Phys. Rev. Lett. 94, 243201 (2005)

    Article  ADS  Google Scholar 

  6. R. Hubele, A. LaForge, M. Schulz, J. Goullon, X. Wang, B. Najjari, N. Ferreira, M. Grieser, V.L.B. de Jesus, R. Moshammer, K. Schneider, A.B. Voitkiv, D. Fischer, Phys. Rev. Lett. 110, 133201 (2013)

    Article  ADS  Google Scholar 

  7. E. Ghanbari-Adivi, D. Fischer, N. Ferreira, J. Goullon, R. Hubele, A. LaForge, M. Schulz, Don Madison, Phys. Rev. A 94, 022715 (2016)

    Article  ADS  Google Scholar 

  8. E. Ghanbari-Adivi, D. Fischer, N. Ferreira, J. Goullon, R. Hubele, A. LaForge, M. Schulz, Don Madison, J. Phys. B: At. Mol. Opt. Phys. 50, 215202 (2017)

    Article  ADS  Google Scholar 

  9. V. Mergel, R. Dörner, Kh. Khayyat, M. Achler, T. Weber, O. Jagutzki, H.J. Lüdde, C.L. Cocke, H. Schmidt-Böcking, Phys. Rev. Lett. 86, 2257 (2001)

    Article  ADS  Google Scholar 

  10. V. Mergel, R. Dörner, J. Ullrich, O. Jagutzki, S. Lencinas, S. Nüttgens, L. Spielberger, M. Unverzagt, C.L. Cocke, R.E. Olson, M. Schulz, U. Buck, E. Zanger, W. Theisinger, M. Isser, S. Geis, H. Schmidt-Böcking, Phys. Rev. Lett. 75, 2200 (1995)

    Article  ADS  Google Scholar 

  11. M.S. Schöffler, J. Titze, LPh.H. Schmidt, T. Jahnke, N. Neumann, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, I. Mančev, Phys. Rev. A 79, 064701 (2009)

    Article  ADS  Google Scholar 

  12. T. Kambara, J.Z. Tang, Y. Awaya, B.D. DePaola, O. Jagutzki, Y. Kanai, M. Kimura, T.M. Kojima, V. Mergel, Y. Nakai, H.W. Schmidt-Böcking, I. Shimamura, J. Phys. B: At. Mol. Opt. Phys. 28, 4593 (1995)

    Article  ADS  Google Scholar 

  13. T. Kambara, A. Igarashi, N. Watanabe, Y. Nakai, T.M. Kojima, Y. Awaya, J. Phys. B: At. Mol. Opt. Phys. 30, 1251 (1997)

    Article  ADS  Google Scholar 

  14. T. Kambara, M. Kimura, Y. Awaya, T.M. Kojima, V. Mergel, Y. Nakai, H. Schmidt-Böckingk, J. Phys. B: At. Mol. Opt. Phys. 31, L909 (1998)

    Article  ADS  Google Scholar 

  15. E. Ghanbari-Adivi, H. Ghavaminia, J. Phys. B: At. Mol. Opt. Phys. 45, 235202 (2012)

    Article  ADS  Google Scholar 

  16. E. Ghanbari-Adivi, H. Ghavaminia, Few-Body Syst. 55, 1109 (2014)

    Article  ADS  Google Scholar 

  17. E. Ghanbari-Adivi, H. Ghavaminia, Eur. Phys. J. D. 66, 318 (2012)

    Article  ADS  Google Scholar 

  18. H. Ghavaminia, E. Ghanbari-Adivi, Chin. Phys. B 24, 073401 (2015)

    Article  Google Scholar 

  19. A. Harris, Atoms 7, 44 (2019)

    Article  ADS  Google Scholar 

  20. O. Ghorbani, E. Ghanbari-Adivi, EPL 120, 63001 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Adivi, E. Theoretical study of the recoil-ion momentum distribution for single-electron capture in fast \(B^{5+}-He\) collisions. Eur. Phys. J. D 76, 105 (2022). https://doi.org/10.1140/epjd/s10053-022-00436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00436-0

Navigation