Skip to main content
Log in

Pyragas method and chaos in higher-order nonlinear Schrödinger equation in an optical fiber

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Various dynamic behaviors of the higher-order nonlinear Schrödinger (HNLS) equation are investigated in an optical fiber. The governing model is converted into the planar dynamical system with the help of Galilean transformation. Through the effective potential and their corresponding phase portrait, the effects of the self-phase modulation and the quintic nonlinearity on the unperturbed system are addressed. Moreover, we performed different numerical tools such as time series, phase portraits as well as the Poincaré section, which show that the perturbed system transits from the quasi-periodic state to the chaotic state according to the frequency \(\omega \) and the strength of the external perturbation \(f_{0}\). The chaotic phenomena can be controlled by using the Pyragas method. This work finds its applications in broadband telecommunications which extend in the infrared spectral region, the doping of optical fiber as well as the encryption of information.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.]

References

  1. J.S. Russell, Report of the Fourteenth Meeting of the British Association for the Advancement of Science (York, Plates XLVII-LVII, 1845)

  2. N. Raza, U. Afzal, A.R. Butt, H. Rezazadeh, Opt Quant Electron. 51, 107 (2019)

    Article  Google Scholar 

  3. N. Raza, A. Javid, Optik. 178, 557 (2019)

    Article  ADS  Google Scholar 

  4. N. Raza, A. Zubair, Modern. Phys Lett B. 33, 1850427:1-1850427:10 (2019)

    Google Scholar 

  5. N. Raza, M. Abdullah, A.R. Butt, Optik. 157, 997 (2018)

    Article  ADS  Google Scholar 

  6. N. Raza, Indian J. Phys. 93(5), 657 (2019)

    Article  ADS  Google Scholar 

  7. N. Raza, A. Zubair, J. Modern Optic. 65, 1975 (2018)

    Article  ADS  Google Scholar 

  8. P.K. Das, Sohag J. Math. 5(1), 29–33 (2018)

    Article  Google Scholar 

  9. G. B. Whithman, Linear and Nonlinear waves New York, chapt.17, (1974)

  10. E. Tala-Tebue, Eur. Phys. J. Plus 133, 289 (2018)

    Article  Google Scholar 

  11. S.A. Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 79, 4790 (1997)

    Article  ADS  Google Scholar 

  12. E. Tala-Tebue, Z.I. Djoufack, E. Fendzi-Donfack, A. Kenfack-Jiotsa, T.C. Kofane, Optik 127, 11124 (2016)

    Article  ADS  Google Scholar 

  13. E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 136 (2014)

    Article  Google Scholar 

  14. A.J.M. Jawad, M.D. Petkovic, A. Biswas, Appl. Math. Comput. 217, 869 (2010)

    MathSciNet  Google Scholar 

  15. K. Hosseini, M.S. Osman, M. Mirzazadeh, F. Rabiei, Optik 206, 164259 (2020)

    Article  ADS  Google Scholar 

  16. D. Mehdi, S. Fatemeh, Phys. Scr. 75, 778 (2007)

    Article  MathSciNet  Google Scholar 

  17. R. Kazemi, M. Mosaddeghi, Math. Interd. Res. 4, 263 (2019)

    Google Scholar 

  18. F. Drouart Nonlinéarité Kerr dans les Fibres Optiques Microstructurées.Thèse de doctorat en Électromagnétisme. 3 Dec (2009)

  19. R. Radhakrishnan, Phys. Rev. E 60, 3314 (1999)

    Article  ADS  Google Scholar 

  20. M.M. Khater, R.A. Attia, A.H. Abdel-Aty, M.A. Abdou, H. Eleuch, D. Lu, Results Phys 16, 103000 (2020)

    Article  Google Scholar 

  21. A.U. Awan, H.U. Rehman, M. Tahir, M. Ramzan, Optik 165496 (2020)

  22. F.S. Mario, FERREIRA. J. Nonlinear Opt. Phys. Mater. 17, 1–23 (2008)

    Google Scholar 

  23. Dimitar Pushkarov, Opt. Commun. 124, 354 (1996)

    Article  ADS  Google Scholar 

  24. H.B. Han, H.J. Li, C.Q. Dai, Appl. Math. Lett. 120, 107302 (2021)

    Article  Google Scholar 

  25. C.Q. Dai, G. Wu, H.J. Li, Y.Y. Wang. Fractals (2021)

  26. C. Qi-Hao, D. Chao-Qing, Chin. Phys. Lett. 38(9), 090501 (2021)

    Article  Google Scholar 

  27. Ping Wang, Opt. Quant. Electron 12, 1345 (2006)

    ADS  Google Scholar 

  28. A.G. Alka, Phys. Rev. A 84, 063830 (2011)

    Article  ADS  Google Scholar 

  29. A. Choudhuri, Phys. Rev. A 88, 033808 (2013)

    Article  ADS  Google Scholar 

  30. M.J. Ablowitz, C. M. AIP Conference Proceedings 40, 755 (2005)

  31. H. S. Dhillon, F. V. Kusmartsev and K. E. Kürten, J. Nonlinear Math. Phys. 8, (2001)

  32. S.A. Gardiner, Phys. Rev. A 62, 023612 (2000)

    Article  ADS  Google Scholar 

  33. J. Yin, L. Zhao, Phys. Lett. A 5, 3158 (2014)

    Google Scholar 

  34. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001)

    MATH  Google Scholar 

  35. C. Zhao, Y.T. Gao, Z.Z. Lan, J.W. Yang, C.Q. Su, Phys. Lett. B 30, 1650312 (2016)

    Google Scholar 

  36. M.J. Ablowitz, D. Henderson, J. Hammack, C.M. Schober, Physica D 152, 433 (2001)

    Google Scholar 

  37. H. Triki, Phys. Pol. A 130, 718 (2016)

    Article  Google Scholar 

  38. G.M. Mahmoud, A.A. Mohamed, S.A. Aly, Physica A 292, 193 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.A. Lazzouni, S. Bowong, F.M. Moukan, B. Cherki, Commun. Nonlinear Sci. Numer. Simul. 12, 804 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. Z.J. Jin, R.Q. Wu, Chaos, Solitions and Fractals 23, 399 (2005)

    Article  ADS  Google Scholar 

  41. Z.J. Jin, J.C. Huang, J. Deng, Chaos, Solitions and Fractals 33, 795 (2007)

    Article  ADS  Google Scholar 

  42. A. Boukabou, Méthodes de contrôle des systèmes chaotiques et leur application pour la synchronisation Juin (2006)

  43. E. Ott, Phys. Rev. L. 64, 11 (1990)

    Google Scholar 

  44. M.-J. Wang, Nonlinear Dyn. 67, 1097 (2012)

    Article  Google Scholar 

  45. Y. Shi, Int. J. Math. Sci. Eng. Appl. 9, 197 (2015)

    Google Scholar 

  46. X.R. Shi, Appl. Math. Comput. 215, 1711 (2009)

    MathSciNet  Google Scholar 

  47. Qun Zhang, Terence H. Chan, Alex Grant, Sci. Rep. 8, 15596 (2018). https://doi.org/10.1038/s41598-018-33589-3

    Article  ADS  Google Scholar 

  48. A. Ali-Pacha, N. Hadj-Said, A. Mohamed, et A. BELGHORAF, SETIT March 22-26, TUNISIA (2009)

  49. K. Pyragas, Phys. Lett. A 99, 102 (1993)

    Google Scholar 

  50. M. Roopaei, Conf. Proc. 15, 4158 (2010)

    MathSciNet  Google Scholar 

  51. A.R. Seadawy, D. Kumar, A.K. Chakrabarty, Eur. Phys. J. Plus 133, 182 (2018)

    Article  Google Scholar 

  52. D. Lai, Appl. Math. Comput. 52, 1649 (2006)

    Article  Google Scholar 

  53. Aly R. Seadawy, Eur. Phys. J. Plus 29, 132 (2017)

    Google Scholar 

  54. Aly Seadawy, Optik 31, 139 (2017)

    MathSciNet  Google Scholar 

  55. Z.S. Yersultanova, M. Zhassybayeva, K. Yesmakhanova, G. Nugmanova, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 13, 1550134 (2016)

    Article  MathSciNet  Google Scholar 

  56. P.J. Olver, Introduction To Partial Differential Equation (Springer, Berlin, 2020)

    Google Scholar 

  57. B.B. Mouhammadoul, C.G.L. Tiofack, A. Alim, A. Mohamadou, Eur. Phys. J. D 75, 61 (2021)

    Article  ADS  Google Scholar 

  58. A. Jhangeer, H. Rezazadeh, A. Seadawy, Pramana J. Phys. 95, 41 (2021)

  59. A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, D. Baleanu, M.B. Riaz, Chaos Solitons and Fractals 143, 110578 (2021)

  60. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  61. C. Bick, C. Kolodziejski, M. Timme, New J. Phys. 15, 063038 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  62. Mounira Kesmia, Chaotic Model. Simul. 3, 387 (2016)

    Google Scholar 

  63. S. Hadef, A. Boukabou, J. Franklin Inst. 351, 2728 (2014)

    Article  MathSciNet  Google Scholar 

  64. E. Infeld, G. Rowlands, J. Fluid Mech. 230, 6924395 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CGLT conceived the idea of the present work. MB and AA performed the analytical and numerical computations. AM refined the analytical calculations. BBM, MB and AA conducted the interpretation of the results. MB wrote an initial draft. AM finalized the article.

Corresponding author

Correspondence to B. B. Mouhammadoul.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, M., Mouhammadoul, B.B., Tiofack, C.G.L. et al. Pyragas method and chaos in higher-order nonlinear Schrödinger equation in an optical fiber. Eur. Phys. J. D 76, 104 (2022). https://doi.org/10.1140/epjd/s10053-022-00435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00435-1

Navigation