Skip to main content
Log in

DFT analysis and third-harmonic generation properties of one series of push–pull benzylidenemalononitrile derivatives

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Optical and nonlinear optical properties of benzylidenemalononitrile derivatives with different electron-donating groups’ substituents were studied. Four benzylidenemalononitrile derivatives [benzylidenemalononitrile (1), (4-chlorobenzylidene)malononitrile (2), (4-hydroxybenzylidene)malononitrile (3) and (4-(dimethylamino)benzylidene)malononitrile (4)] were functionalized, synthesized and analyzed using 1H NMR, FTIR, and UV–vis. A study of electrochemical properties was conducted using cyclic voltammetry. The third-harmonic generation technique was used to analyze and evaluate the susceptibility (\(\chi_{{{\text{THG}}}}^{ < 3 > }\)) of cubic nonlinear optical properties on thin films at 1064 nm. THG measurements using the Maker fringe technique were used to analyze and evaluate the susceptibility \(\chi_{{}}^{ < 3 > }\) parameter of thin films of PMMA with embedded molecules. The studied benzylidenemalononitrile substituted with a strong electron-donating group showed considerable nonlinear responses. Theoretical analysis was performed using DFT/B3LYP/6-311G++ (d, p) and Gaussian 09 program quantum chemical calculations. Third-order nonlinear optical response increases proportionally with the electron-donating character of the substituent groups.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All data are included in the article.]

References

  1. A.D. Gazazyan, E.A. Gazazyan, A.G. Margaryan, Eur. Phys. J. D 53, 243–251 (2009)

    Article  ADS  Google Scholar 

  2. G. Horowitz, Eur. Phys. J. Appl. Phys. 53, 33602 (2011)

    Article  ADS  Google Scholar 

  3. G. Lewińska, K.S. Danel, A. Wisła-Świder, Z. Usatenko, J. Kanak, Ł Walczak, P. Kuterba, J. Sanetr, K.W. Marszalek, Appl. Surf. Sci. 533, 147366 (2020)

    Article  Google Scholar 

  4. G. Lewińska, K.S. Danel, I. Łukaszewska, G. Lewiński, W. Niemiec, J. Sanetra, J. Mater. Sci. Mater. Electron. 29, 17809–17817 (2018)

    Article  Google Scholar 

  5. R. Dorn, D. Baumns, P. Kersten, R. Regener, Nonlinear optical materials for integrated optics: telecommunications and sensors. Adv. Mater. 4, 460–473 (1992)

    Google Scholar 

  6. S.R. Marder, J.W. Perry, Molecular materials for second-order nonlinear optical applications. Adv. Mater. 5, 804–815 (1993)

    Article  Google Scholar 

  7. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991)

    Google Scholar 

  8. P. Günter, Nonlinear Optical Effects and Materials (Springer, Berlin, 2000)

    Book  Google Scholar 

  9. M.B. Ros, Organic materials for nonlinear optics, in Engineering of Crystalline Materials Properties. NATO Science for Peace and Security Series B: Physics and Biophysics. ed. by J.J. Novoa, D. Braga, L. Addadi (Springer, Dordrecht, 2008)

    Google Scholar 

  10. J. Zyss, J.L. Oudar, Phys. Rev. A 26, 2028–2048 (1982)

    Article  ADS  Google Scholar 

  11. J.L. Oudar, J. Zyss, Phys. Rev. A 26, 2016–2027 (1982)

    Article  ADS  Google Scholar 

  12. Zyss, J. in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Microelectronics, ed. by J.-L. Bredas, R.R. Chance (Kluwer, Dordrecht, 1990)

  13. S. Arroudj, M. Bouchouit, K. Bouchouit, A. Bouraiou, L. Messaadia, B. Kulyk, V. Figa, S. Bouacida, Z. Sofani, S. Taboukhat, Opt. Mater. 56, 116 (2016)

    Article  ADS  Google Scholar 

  14. M. Bouchouit, Y. Elkouari, L. Messaadia, A. Bouraiou, S. Arroudj, S. Bouacida, S. Taboukhat, K. Bouchouit, Opt. Quant. Electron. 48, 178 (2016)

    Article  Google Scholar 

  15. G.F. Lipscomb, A.F. Garito, R.S. Narang, J. Chem. Phys. 75, 1509 (1981)

    Article  ADS  Google Scholar 

  16. D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 94, 195–242 (1994)

    Article  Google Scholar 

  17. N.J. Long, Angew. Chem. Int. Ed. Engl. 34, 21 (1995)

    Article  Google Scholar 

  18. P.N. Prasad, B.A. Reinhardt, Chem. Mater. 2, 660 (1990)

    Article  Google Scholar 

  19. I.D.L. Albert, T.J. Marks, M.A. Ratner, J. Chem. Phys. 100, 9714 (1996)

    Article  Google Scholar 

  20. J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, B. Sahraoui, Study of surface relief gratings on azo organometallic films in picosecond regime. Opt. Express 16, 15633–15639 (2008)

    Article  ADS  Google Scholar 

  21. S. Arroudj, A. Aamoum, L. Messaadia, A. Bouraiou, S. Bouacida, K. Bouchouit, B. Sahraoui, Effect of the complexation on the NLO electronic contribution in film based conjugated quinoline ligand. Phys. B 516, 1–6 (2017)

    Article  ADS  Google Scholar 

  22. B. Kulyka, D. Guichaouaa, A. Ayadia, A. El-Ghayourya, B. Sahraouia, Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dyes Pigments 145, 256–262 (2017)

    Article  Google Scholar 

  23. K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J.Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, B. Sahraoui, Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives. Appl. Phys. Lett. 97(10), 101104 (2010)

    Article  ADS  Google Scholar 

  24. F.A. Sahki, A. Bouraiou, S. Taboukhat, L. Messaadia, S. Bouacida, V. Figa, K. Bouchouit, B. Sahraoui, Design and synthesis of highly conjugated electronic phenanthrolines derivatives for remarkable NLO properties and DFT analysis. Optik 241, 166949 (2021)

    Article  ADS  Google Scholar 

  25. H. Belahlou, K. Waszkowska, A. Bouraiou, E. Bendeif, S. Taboukhat, K. Bouchouit, B. Sahraoui, New architecture of organo electronic chalcones derivatives: synthesis, crystal structures and optical properties. Opt. Mater. 108, 110188 (2020)

    Article  Google Scholar 

  26. K. Bouchouit, H. Bougharraf, B. Derkowska-Zielinska, N. Benali-cherif, B. Sahraoui, Reversible phase transition in semi-organic compound p-nitroanilinium sulfate detected using second harmonic generation as a tool. Opt Mater 48, 215–221 (2015)

    Article  ADS  Google Scholar 

  27. P. Singh, K. Kumari, A. Katyal, R. Kalra, R. Chandra, Cu Nanoparticles in ionic liquid: an easy and efficient catalyst for addition-elimination reaction between active methylene compounds and imines in an ionic liquid. Catal. Lett. 130, 648–654 (2009)

    Article  Google Scholar 

  28. A. Szłapa, S. Kula, U. Błaszkiewicz, M. Grucela, E. Schab-Balcerzak, M. Filapek, Simple donore-π-acceptor derivatives exhibiting aggregationinduced emission characteristics for use as emitting layer in OLED. Dyes Pigments 129, 80–89 (2016)

    Article  Google Scholar 

  29. A.-Q. Zhang, N. Zhang, S. Hong, M. Zhang, Leucoemeraldine-base-catalyzed knoevenagel condensation. Synth. Commun. 1(39), 3024–3030 (2009)

    Article  Google Scholar 

  30. G. Rajesh Krishnan, K. Sreekumar, First example of organocatalysis by polystyrene-supported PAMAM dendrimers: highly efficient and reusable catalyst for knoevenagel condensations. Eur. J. Org. Chem. 2008, 4763–4768 (2008)

    Article  Google Scholar 

  31. M.Y. Antipin, T.V. Timofeeva, R.D. Clark, V.N. Nesterov, M. Sanghadasa, T.A. Barr, B. Penn, L. Romero, M. Romero, Molecular crystal structures and nonlinear optical properties in the series of dicyanovinylbenzene and its derivatives. J. Phys. Chem. A 102, 7222–7232 (1998)

    Article  Google Scholar 

  32. B.B. Frank, P.R. Laporta, B. Breiten, M.C. Kuzyk, P.D. Jarowski, W.B. Schweizer, P. Seiler, I. Biaggio, C. Boudon, J.P. Gisselbrecht, F. Diederich, Comparison of CC triple and double bonds as spacers in push-pull chromophores. Eur. J. Org. Chem. 2011, 4307–4317 (2011)

    Article  Google Scholar 

  33. É. Torres, M.N. Berberan-Santos, M.J. Brites, Synthesis, photophysical and electrochemical properties of perylene dyes. Dyes Pigments 112, 298e304 (2015)

    Article  Google Scholar 

  34. L. Deng, J. Li, G.-X. Wang, L.-Z. Wu, Simple bipolar host materials incorporating CN group for highly efficient blue electrophosphorescence with slow efficiency roll-off. J. Mater. Chem. C 1, 8140e5 (2013)

    Google Scholar 

  35. X. Li, S.-H. Kim, Y.-A. Son, Optical properties of donor-p-(acceptor)n merocyanine dyes with dicyanovinylindane as acceptor group and triphenylamine as donor unit. Dyes Pigments 82, 293e8 (2009). https://doi.org/10.1016/j.dyepig.2008.12.014

    Article  Google Scholar 

  36. S.-H. Kim, S.-Y. Lee, S.-Y. Gwon, Y.-A. Son, J.-S. Bae, DepeA solvatochromic charge transfer dyes containing a 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor. Dyes Pigments 84, 169e75 (2010). https://doi.org/10.1016/j.dyepig.2009.07.012

    Article  Google Scholar 

  37. E. Lamera, S. Bouacida, H. Merazig, A. Chibani, M. LeBorgne, Z. Bouaziz, A.B.Z.F. Naturforschung, J. Chem. Sci. 72(5), 361–368 (2017)

    Google Scholar 

  38. I. Ai-Qin Zhang, N. Zhang, S. Hong, M. Zhang, Synth. Commun. 39, 3024–3030 (2009)

    Article  Google Scholar 

  39. D. Fen, L. Yi Qun, D. Rong Feng, Chin. Chem. Lett. 18(3), 266–268 (2007)

    Article  Google Scholar 

  40. A. Gazit, P. Yaish, C. Gilon, A. Levitzki, J. Med. Chem. 32, 2344–2352 (1989)

    Article  Google Scholar 

  41. G. Rajesh Krishnan, K. Sreekumar, Eur. J. Org. Chem. 2008, 4763–4768 (2008)

    Article  Google Scholar 

  42. D. Maker, R.W. Terhune, M.F. Niseno, C.M. Savage, Phys. Rev. Lett. 8, 21 (1962)

    Article  ADS  Google Scholar 

  43. B. Sahraoui, J. Luc et al., J. Opt. A, Pure Appl. Opt. 11, 024005 (2009)

    Article  ADS  Google Scholar 

  44. K. Kubodera, H. Kobayashi, Mol. Crys. Liq. Crys. Inc. NLO 182(1), 103–113 (1990)

    Google Scholar 

  45. U. Gubler, C. Bosshard, Phys. Rev B. 16, 10702 (2000)

    Article  ADS  Google Scholar 

  46. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09. Revision C. 01 (Gaussian, Wallingford, CT, USA, 2009)

    Google Scholar 

  47. R. Dennington, T. Keith, J.G. Millam, Version 5.0.9 (Semichem Inc. Shawnee Mission, KS, USA, 2009)

  48. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  49. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  ADS  Google Scholar 

  50. D.A. Kleinman, Phys. Rev. 126, 1977 (1962)

    Article  ADS  Google Scholar 

  51. T. Koopmans, Uber die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1, 104–113 (1934)

    Article  ADS  MATH  Google Scholar 

  52. Z. Demircioğlu, G. Kaştaş, Ç.A. Kaştaş, R. Frank, Spectroscopic, XRD, hirshfeld surface, and DFT approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA& MPA) of (E)-4-bromo-2-[(4-bromophenylimino) methyl]-6-ethoxyphenol. J. Mol. Struct. 1191, 129–137 (2019)

    Article  ADS  Google Scholar 

  53. R. Kumar, T. Karthick, V. Parol, P. Rawat, P. Tandon, A.N.P. Gupta, V. Upadhyaya, Spectroscopic characterization and structural insights of 4-[(1E)-3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl] phenyl 4-methylbenzene-1-sulfonate using vibrational, electronic spectra and quantum chemical calculations. J. Mol. Struct. 1225, 129144 (2021)

    Article  Google Scholar 

  54. P.S. Liyanage, R.M. De Silva, K.M.N. De Silva, Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations. J. Mol. Struct. (Theochem) 639, 195–201 (2003). https://doi.org/10.1016/j.theochem.2003.08.009

    Article  Google Scholar 

  55. A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556–4573 (2004)

    Article  Google Scholar 

  56. T.A. Enache, A.M. Oliveira-Brett, Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 655, 9 (2011)

    Article  Google Scholar 

  57. A. Szłapa, S. Kula, U. Błaszkiewicz, M. Grucela, E. Schab-Balcerzak, M. Filapek, Simple donor–π–acceptor derivatives exhibiting aggregation-induced emission characteristics for use as emitting layer in OLED. Dyes Pigments 129, 80–89 (2016)

    Article  Google Scholar 

  58. H. Li, Y. Guo, G. Li, H. Xiao, Y. Lei, X. Huang et al., Aggregation-induced fluorescence emission properties of dicyanomethylene-1,4-dihydropyridine derivatives. J. Phys. Chem. C 119, 6737–6748 (2015)

    Article  Google Scholar 

  59. J.S. Murray, P. Politzer, The electrostatic potential: an overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 153–163 (2011)

    Article  Google Scholar 

  60. X.H. Wang, D.P. West, N.B. McKeown, T.A. King, J. Opt. Soc. Am. B 15, 1895–1903 (1998)

    Article  ADS  Google Scholar 

  61. P. Sjoberg, P. Politzer, Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. J. Phys. Chem. 94, 3959–3961 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.S was involved in synthesis, methodology, and results analysis. ST contributed to results analysis, investigation, resources. L.M was involved in theoretical analysis. M.G. and VF contributed to electrochemical study, investigation, and resources. A.B was involved in methodology, results analysis, writing—original draft, writing, and supervision. R.N contributed to spectroscopy and spectral analysis, methodology, results analysis. K.B was involved in methodology, software, validation, results analysis, investigation, resources, writing—original draft, and supervision. B.S contributed to investigation, writing, and supervision.

Corresponding authors

Correspondence to A. Bouraiou, K. Bouchouit or B. Sahraoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakki, B., Taboukhat, S., Messaadia, L. et al. DFT analysis and third-harmonic generation properties of one series of push–pull benzylidenemalononitrile derivatives. Eur. Phys. J. D 76, 101 (2022). https://doi.org/10.1140/epjd/s10053-022-00424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00424-4

Navigation