Skip to main content
Log in

Electron-impact cross sections of acetylene up to 5 keV

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The electron impact cross sections like elastic, dissociative ionization, and the total are computed for acetylene from ionization threshold up to 5 keV. The dissociative partial ionization cross sections of various cations are reported using the binary-encounter-Bethe (BEB) model. The elastic cross sections are calculated within molecular framework modified by invoking the single-centre expansion formalism. The total cross sections at these energies are estimated by summing the ionization and elastic cross sections incoherently. The cross sections obtained for different processes are in high degree of convergence with the experimental and theoretical data. The work underlines the role of mass spectrometry data in the study of ionization process as well as the diverse nature of BEB model.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available upon reasonable request from the authors.].

References

  1. R.E.H. Clark, D.H. Reiter, Nuclear Fusion Research?: Understanding Plasma–Surface Interactions (Springer, Berlin, Heidelberg, 2005)

  2. L.G. Christophorou, J.K. Olthoff, Fundamental Electron Interactions with Plasma Processing Gases (Springer, Berlin, 2004)

  3. K. Becker, V. Tarnovsky, Plasma Sources Sci. Technol. 4, 307 (1995)

  4. G.S. Oehrlein, J.F. Rembetski, IBM, J. Res. Develop. 36, 140 (1992)

  5. D.M. Manos, D.L. Flamm (eds.), Plasma Etching: An Introduction (Academic Press, New York, 1989)

  6. Y. Fujimura, S. Jung, H. Shirai, Jpn. J. Appl. Phys. Part 2 40, L1214 (2001)

    Article  Google Scholar 

  7. A. Starikovskiy, Philos. Trans. R. Soc. A 373, 20150074 (2015)

    Article  ADS  Google Scholar 

  8. A.M.R.N. Alrashidi, N.A. Adam, A.A. Hairuddin, L.C. Abdullah, Int. J. Energy Res. 42, 1813 (2018)

    Article  Google Scholar 

  9. R.K. Janev, Atomic and Molecular Processes in Fusion Edge Plasmas (Plenum Press, New York, 1995)

  10. G.J.M. Hagelaar, L.C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)

    Article  ADS  Google Scholar 

  11. M. Matsuura, A.A. Zijlstra, J.T. van Loon, I. Yamamura, A.J. Markwick, P.A. Whitelock, P. Woods, J.R. Marshall, M.W. Feast, L.B.F.M. Waters, Astron. Astrophys. 434, 691 (2005)

    Article  ADS  Google Scholar 

  12. S.W. Miller, Oxy-Acetylene Welding (Gadow Press, New York, 2008)

  13. P.F. Coheur, P.F. Bernath, M. Carleer, R. Colin, O.L. Polyansky, N.F. Zobov, R.J.B.S.V. Shirin, J. Tennyson, J. Chem. Phys. 122, 074307 (2005)

    Article  ADS  Google Scholar 

  14. -Y. Mi, Song and J-S Yoon, H. Cho, G. P. Karwasz, V. Kokoouline, Y. Nakamura, J. Tennyson, J. Phys. Chem. Ref. Data 46, 013106 (2017)

  15. I. Bray I, D. V. Fursa, A. S. Kheifets, A. T. Stelbovics, J. Phys. B: At. Mol. Opt. Phys. 35, R117 (2002)

  16. I. Bray, D.V. Fursa, A.S. Kadyrov, A.T. Stelbovics, A.S. Kheifets, A.M. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)

    Article  ADS  Google Scholar 

  17. M.C. Zammit, D.V. Fursa, J.S. Savage, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 50, 123001 (2017)

    Article  ADS  Google Scholar 

  18. J. Tennyson, Phys. Rep. 491(2–3), 29 (2010)

    Article  ADS  Google Scholar 

  19. M.C. Zammit, D.V. Fursa, I. Bray, Phys. Rev. A 90, 022711 (2014)

    Article  ADS  Google Scholar 

  20. M. Bassi, A. Bharadvaja, K.L. Baluja, Eur. Phys. J. D 74, 232 (2020)

    Article  ADS  Google Scholar 

  21. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 251 (2019)

    Article  ADS  Google Scholar 

  22. V. Graves, B. Cooper, J. Tennyson, J. Chem. Phys. 154, 114104 (2021)

    Article  ADS  Google Scholar 

  23. H. Tanaka, M.J. Brunger, L. Campbell, H. Kato, M. Hoshino, A.R.P. Rau, Rev. Mod. Phys. 88, 025004 (2016)

    Article  ADS  Google Scholar 

  24. S. Pal, R. Singh, M. Kumar, N. Kumar, Radiat. Phys. Chem. 173, 108877 (2020)

    Article  Google Scholar 

  25. Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  26. J.R. Hamilton, J. Tennyson, S. Huang, M.J. Kushner, Plasma Sources Sci. Technol. 26, 065010 (2017)

    Article  ADS  Google Scholar 

  27. K. Goswami, A.K. Arora, A. Bharadvaja, K.L. Baluja, Eur. Phys. J. D 75, 228 (2021)

    Article  ADS  Google Scholar 

  28. A. Bharadvaja, M. Bassi, A.K. Arora, K.L. Baluja, Plasma Sources Sci. Technol. 30, 095012 (2021)

    Article  ADS  Google Scholar 

  29. A.K. Arora, K.K. Gupta, K. Goswami, A. Bharadvaja, K.L. Baluja, Plasma Sources Sci. Technol. 31, 015008 (2022)

    Article  ADS  Google Scholar 

  30. Y.-K. Kim, J.P. Santos, F. Parente, Phys. Rev. A 62, 052710 (2000)

    Article  ADS  Google Scholar 

  31. F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  33. S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967)

    Article  ADS  Google Scholar 

  34. A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana J. Phys. 95, 167 (2021)

    Article  ADS  Google Scholar 

  35. http://cccbdb.nist.gov

  36. GAUSSIAN 03 (Gaussian, Inc., Wallingford, CT. 2003)

  37. N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 180, 2544 (2009)

    Article  ADS  Google Scholar 

  38. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    Article  ADS  Google Scholar 

  39. S. Zheng, S.K. Srivastava, J. Phys. B At. Mol. Opt. Phys. 29, 3235 (1996)

    Article  ADS  Google Scholar 

  40. https://webbook.nist.gov/chemistry/

  41. H. Deutsch, K. Becker, S. Matt, T.D. Mark, Int. J. Mass Spectrom. Ion Process. 197, 37 (2000)

    Article  Google Scholar 

  42. Y.-K. Kim, M. Ali, M. Rudd, J. Res. Natl. Inst. Stand. Technol. 102, 693 (1997)

    Article  Google Scholar 

  43. https://physics.nist.gov/PhysRefData/Ionization/molTable.html

  44. J.T. Tate, P.T. Smith, A.L. Vaughan, Phys. Rev. 48, 525 (1935)

    Article  ADS  Google Scholar 

  45. C. Tian, C. Vidal, J. Phys. B: At. Mol. Opt. Phys. 31, 895 (1998)

  46. G. Josifov, D. Lukić, D. Durić, M. Kurepa, J. Serb. Chem. Soc. 65, 517 (2000)

    Article  Google Scholar 

  47. S.J. King, S.D. Price, J. Chem. Phys. 127, 174307 (2007)

  48. S. Feil, K. Gluch, A. Bacher, S. Matt-Leubner, T.D. Mddotark, J. Chem. Phys. 124, 214307 (2006)

  49. J.T. Tate, P.T. Smith, Phys. Rev. 39, 270 (1932)

    Article  ADS  Google Scholar 

  50. A. Gaudin, R. Hagemann, J. Chim. Phys. 64, 1209 (1967)

    Article  Google Scholar 

  51. R. Azria, F. Fiquet-Fayard, J. Phys. 33, 663 (1972)

    Article  Google Scholar 

  52. I. Iga, M.-T. Lee, P. Rawat, L. Brescansin, L. Machado, Eur. Phys. J. D 31, 45 (2004)

    Article  ADS  Google Scholar 

  53. A. Gauf, C. Navarro, G. Balch, L. Hargreaves, M. Khakoo, C. Winstead, V. McKoy, Phys. Rev. A 87, 012710 (2013)

    Article  ADS  Google Scholar 

  54. C. Szmytkowski, P. Mo\({\dot{z}}\)ejko, M. Zawadzki, K. Maciag, and E. Ptasi\(\grave{n}\)ska-Denga, Phys. Rev. A 89, 052702 (2014)

  55. F. Gianturco, T. Stoecklin, J. Phys. B: At. Mol. Opt. Phys. 27, 5903 (1994)

    Article  ADS  Google Scholar 

  56. W.M. Ariyasinghe, D. Powers, Phys. Rev. A 66, 052716 (2002)

    Article  ADS  Google Scholar 

  57. W.M. Ariyasinghe, G. Vilela, Nucl. Instrum. Methods Phys. Res. B 268, 2217 (2010)

    Article  ADS  Google Scholar 

  58. I. Fabrikant, J. Phys. B: At. Mol. Opt. Phys. 49, 222005 (2016)

  59. M. Khakoo, T. Jayaweera, S. Wang, S. Trajmar, J. Phys. B: At. Mol. Opt. Phys. 26, 4845 (1993)

  60. I. Iga, I.P. Sanches, E. de Almeida, R.T. Sugohara, L. Rosani, M.-T. Lee, J. Electron Spectrosc. Relat. Phenom. 155, 7 (2007)

  61. T. Meltzer, J. Tennyson, Z. Mas̀in, M. C. Zammit, L. H. Scarlett, D. V. Fursa, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 53, 145204 (2020)

  62. R. Zhang, A. Faure, J. Tennyson, Phys. Scr. 80, 015301 (2009)

    Article  ADS  Google Scholar 

  63. J. Franz, F.A. Gianturco, Phys. Rev. A 88, 042711 (2013)

    Article  ADS  Google Scholar 

  64. K.K. Irikura, Y.-K. Kim and, J. Res. Natl. Inst. Stand. Technol. 107, 63 (2002)

  65. K.L. Nixon, W.A.D. Pires, R.F.C. Neves, H.V. Duque, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 404, 48 (2016)

  66. J.R. Hamilton, J. Tennyson, S. Huang, M.J. Kushner, Plasma Sources Sci. Technol. 26, 065010 (2017)

    Article  ADS  Google Scholar 

  67. P. Ausloos, C.L. Clifton, S.G. Lias, A.I. Mikaya, S.E. Stein, D.V. Tchekhovskoi, O.D. Sparkman, V. Zaikin, D. Zhu, J. Am. Soc. Mass Spectrom. 10, 287 (1999)

    Article  ADS  Google Scholar 

  68. K.K. Irikura, J. Chem. Phys. 145, 224102 (2016)

    Article  ADS  Google Scholar 

  69. G.P. Barnard, Modern Mass Spectrometry (Institute of Physics, London, 1953)

  70. Z. Mašín, J. Benda, J.D. Gorfinkiel, A.G. Harvey, J. Tennyson, Comp. Phys. Commun. 249, 107092 (2020)

    Article  Google Scholar 

  71. I. Bray et al., J. Phys. B: At. Mol. Opt. Phys. 50, 202001 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally involved in the present work.

Corresponding author

Correspondence to Anand Bharadvaja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have influenced the work reported in this paper.

Additional information

Ajay Kumar Arora is on leave from the college.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, K., Luthra, M., Arora, A.K. et al. Electron-impact cross sections of acetylene up to 5 keV. Eur. Phys. J. D 76, 94 (2022). https://doi.org/10.1140/epjd/s10053-022-00420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00420-8

Navigation