Skip to main content
Log in

Tunable infrared Fano resonance from graphene based hybrid grating structure with germanium substrate

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Fano resonance (FR) spectra from graphene based hybrid structure in the infrared region have been obtained and the related mechanisms are demonstrated by simulation method. By changing geometrical parameters, the interaction between graphene surface plasmon polariton (GSPP) and Fabry Perot (FP) mode can be dramatically tuned, resulting in an interesting asymmetric FR spectrum curve. Combing with the electric field distribution at a certain wavelength, the FR spectrum is ascribed to the coupling of the GSPP mode and FP mode. By applying different gate-voltage, the FR spectrum from this hybrid structure exhibits a continuous tunability in the range of 4.5–15.5 um. A high refractive index sensitivity of this hybrid structure working in the mid-infrared is theoretically demonstrated, and the sensitivity of which reaches 1000 nm per refractive index unit. This tunable hybrid structure exhibits great potential application in optoelectronic devices and high performance sensor.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This is a theoretical study and there is no experimental data available.]

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  2. R. Zia, J.A. Schuller, A. Chandran, M.L. Brongersma, Mater. Today 9, 20–27 (2006)

    Article  Google Scholar 

  3. C.R. Gubbin, S.D. Liberato, Phys. Rev. B 102, 201302 (2020)

    Article  ADS  Google Scholar 

  4. X.Y. Li, G. Haberfehlner, U. Hohenester, O. Stephan, G. Kothleitner, M. Kociak, Science 371, 1364 (2021)

    Article  ADS  Google Scholar 

  5. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, N. Pala, Opt. Express 9, 373–386 (2018)

    Article  Google Scholar 

  6. N. Chen, D. Hasan, C.P. Ho, C. Lee, Adv. Mater. Technol. 3, 1800014 (2018)

    Article  Google Scholar 

  7. X. Chen, W. Fan, C. Song, Carbon 133, 416–422 (2018)

    Article  Google Scholar 

  8. X. Chen, W. Fan, Sci. Rep. 7, 2092 (2017)

    Article  ADS  Google Scholar 

  9. H.Y. Song, S. Zhou, Y.L. Song, X.Z. Wang, S.F. Fu, Opt. Laser Technol. 142, 107232 (2021)

    Article  Google Scholar 

  10. A. Safaei, S. Chandra, M.N. Leuenberger, D. Chanda, ACS Nano 13, 421–428 (2019)

    Article  Google Scholar 

  11. M.D. Goldflam, Z. Fei, I. Ruiz, S.W. Howell, P.S. Davids, D.W. Peters, T.E. Beechem, Optic Express 25, 12400–12408 (2017)

    Article  ADS  Google Scholar 

  12. S. Kim, M.S. Jang, V.W. Brar, K.W. Mauser, L. Kim, H.A. Atwater, Nano Lett. 18, 971–979 (2018)

    Article  ADS  Google Scholar 

  13. X.S. Liu, G.Q. Liu, P. Tang, G.L. Fu, G.Z. Du, Q.Q. Chen, Z.Q. Liu, Carbon 140, 362–367 (2018)

    Article  Google Scholar 

  14. K. Wang, W.H. Fan, X. Chen, C. Song, X.Q. Jiang, Opt. Commun. 439, 61–65 (2019)

    Article  ADS  Google Scholar 

  15. G.G. Zheng, H.J. Zhang, L.B. Bu, H.Y. Gao, L.H. Xu, Y.Z. Liu, Plasmonics 13, 215–220 (2017)

    Article  Google Scholar 

  16. J. Guo, L.Y. Jiang, X.Y. Dai, Y.J. Xiang, Opt. Express 24, 4740 (2016)

    Article  ADS  Google Scholar 

  17. X. Chen, W. Fan, Opt. Lett. 42, 2034–2037 (2017)

    Article  ADS  Google Scholar 

  18. Z. Su, X. Chen, J. Yin, X. Zhao, Opt. Lett. 41, 3799–3802 (2016)

    Article  ADS  Google Scholar 

  19. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Modern Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  20. B.L. Yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nature Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  21. H. Li, J. Phys. Chem. Ref. Data 9, 161–290 (1980)

    Article  ADS  Google Scholar 

  22. T. Amotchkina, M. Trubetskov, D. Hahner, V. Pervak, Appl. Opt. 59, 40–47 (2020)

    Article  ADS  Google Scholar 

  23. W. Gao, J. Shu, C. Qiu, Q. Xu, ACS Nano 6, 7806–7813 (2012)

    Article  Google Scholar 

  24. P.Y. Chen, A. Alu, ACS Nano 5, 5855–5863 (2011)

    Article  Google Scholar 

  25. Z.B. Li, K. Yao, F.N. Xia, S. Shen, J.G. Tian, Y.M. Liu, Sci. Rep. 5, 1–9 (2015)

    Google Scholar 

  26. B. Wei, S. Jian, Opt. Commun. 425, 24–28 (2018)

    Article  ADS  Google Scholar 

  27. Y. Fang, K. Wen, Y. Qin, Z. Li, B. Wu, Opt. Commun. 452, 12–17 (2019)

    Article  ADS  Google Scholar 

  28. L.A. Bian, L. Yang, P.G. Liu, Y.W. Chen, H.Q. Liu, Q.H. Zhou, J. Phys. D 51, 025106 (2017)

    Article  ADS  Google Scholar 

  29. L.A. Bian, P.G. Liu, Q.H. Zhou, C.X. Liu, H.Q. Liu, S. Zha, Opt. Quantum Electron. 50, 220 (2018)

    Article  Google Scholar 

  30. H.J. Li, C.S. Ji, Y.Z. Ren, J.G. Hu, M. Qin, L.L. Wang, Carbon 141, 481–487 (2019)

    Article  Google Scholar 

  31. Z.T. Xie, F.C. Ni, Q. Chang Ma, J. Tao, J. Li, H.Y. Meng, X.G. Huang, Opt. Commun. 419, 90–96 (2018)

    Article  ADS  Google Scholar 

  32. H. Cheng, S. Chena, P. Yu, X. Duan, B. Xie, J. Tian, Appl. Phys. Lett. 103, 203112 (2013)

    Article  ADS  Google Scholar 

  33. S. Hu, S. Yang, Z. Liu, B. Quan, J. Li, C. Gu, J. Phys. Chem. C 123, 13856–13862 (2019)

    Article  Google Scholar 

  34. F.J. Garcia de Abajo, ACS Photonics 1, 135–152 (2014)

    Article  Google Scholar 

  35. C.H. Gan, Appl. Phys. Lett. 101, 111609 (2012)

    Article  ADS  Google Scholar 

  36. J.F. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, D.W. Qi, Opt. Commun. 482, 126563 (2021)

    Article  Google Scholar 

  37. Y.W. Chen, L.A. Bian, Y.C. Xie, G.S. Li, M.T. Lin, P.G. Liu, S. Zha, B. Yi, Opt. Commun. 445, 84–89 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to show thanks to Professor G. G. Zheng (in Nanjing University of Information Science and Technology) for his valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

KZ supervised the work and ran all calculations that are reported in the paper. KZ wrote the manuscript and draw the conclusions.

Corresponding author

Correspondence to Kun Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, K. Tunable infrared Fano resonance from graphene based hybrid grating structure with germanium substrate. Eur. Phys. J. D 76, 98 (2022). https://doi.org/10.1140/epjd/s10053-022-00410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00410-w

Navigation