Skip to main content
Log in

Dynamic behaviour of beta decay constant in H-like atoms with intense laser

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Beta decay in hydrogen-like atoms is studied under the influence of a linearly polarized laser field. The oscillating electronic cloud under an intense laser field produces a time-varying field around the nucleus. The interaction of this electric field with the nucleus of the hydrogenic system is studied in terms of interaction between the electronic and nuclear charge densities. The nuclear transition matrix for beta decay is calculated by considering the interaction Hamiltonian, and the variations in the decay constant are analyzed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: As it is a theoretical calculation-based work hence no data is generated.].

References

  1. J.D. Gillaspy, J. Phys. B: At. Mol. Opt. Phys. 34, R93 (2001)

    Article  ADS  Google Scholar 

  2. T. Beier et al., Eur. Phys. J. A 15, 41 (2002)

    Article  ADS  Google Scholar 

  3. I.I. Tupitsyn, A.V. Loginov, V.M. Shabaev, Opt. Spectroscop., 93. No. 3, 357 (2002)

  4. J. Sommerfeldt, et al, arXiv:2008.03950

  5. T. J. Burvenich, J. Evers, and C.H. Keitel Phys. Rev. C 74, 044601 (2006)

  6. J.W. Yoon, Y.G. Kim, I.W. Choi, J.H. Sung, H.W. Lee, S.K. Lee, C.H. Nam, Optica 8(5), 630–635 (2021)

    Article  ADS  Google Scholar 

  7. See the proposal on the Extreme Light Infrastructure (ELI) available on http://www.eli-laser.eu

  8. R.J. Gould, G.P. Schrder, Phys. Rev. 155, 1404 (1967)

    Article  ADS  Google Scholar 

  9. E.H. Wichmann, N.M. Kroll, Phys. Rev. 101, 843 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.S. Bulanov et al., Phys. Rev. Lett. 105, 220407 (2010)

    Article  ADS  Google Scholar 

  11. S. Matinyan, Phys. Rep. 298, 199 (1998)

    Article  ADS  Google Scholar 

  12. Y.I. Salamin et al., Phys. Rep. 427, 41 (2006)

    Article  ADS  Google Scholar 

  13. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  14. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  15. F. Hannachi et al., Plasma Phys. Control. Fusion 49, B79 (2007)

    Article  ADS  Google Scholar 

  16. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  17. D. Umstadter, J. Phys. D 36, R151 (2003)

    Article  ADS  Google Scholar 

  18. K.W.D. Ledingham, W. Galster, New J. Phys. 12, 045005 (2010)

    Article  ADS  Google Scholar 

  19. N.V. Zamfir, D. Habs, F. Negoita, D. Ursescu, Extreme Light Infrastructure: nuclear physics. Proc. SPIE 8080, 80800X (2011)

    Article  ADS  Google Scholar 

  20. For current information, see http://www.eli-laser.eu

  21. G. Pretzler et al., Phys. Rev. E 58, 1165 (1998)

    Article  ADS  Google Scholar 

  22. T. Ditmire et al., Nature (London) 398, 489 (1999)

    Article  ADS  Google Scholar 

  23. K.W.D. Ledingham et al., Phys. Rev. Lett. 84, 899 (2000)

    Article  ADS  Google Scholar 

  24. T.E. Cowan et al., Phys. Rev. Lett. 84, 903 (2000)

    Article  ADS  Google Scholar 

  25. H. Schwoerer, P. Gibbon, S. Düsterer, R. Behrens, C. Ziener, C. Reich, R. Sauerbrey, Phys. Rev. Lett. 86, 2317 (2001)

    Article  ADS  Google Scholar 

  26. P. K’alm’an, T. Keszthelyi, Phys. Rev. A 47, 1320 (1993)

    Article  ADS  Google Scholar 

  27. S. Typel, C. Leclercq-Willain, Phys. Rev. A 53, 2547 (1996)

    Article  ADS  Google Scholar 

  28. J.C. Solem, L.C. Biedenharn, J. Quant. Spectrosc. Radiat. Trans. 40, 707 (1988)

    Article  ADS  Google Scholar 

  29. J.F. Berger, D.M. Gogny, M.S. Weiss, Phys. Rev. A 43, 455 (1991)

    Article  ADS  Google Scholar 

  30. F.X. Hartmann, D.W. Noid, Y.Y. Sharon, Phys. Rev. A 44, 3210 (1991)

    Article  ADS  Google Scholar 

  31. N. Milosevic, P.B. Corkum, T. Brabec, Phys. Rev. Lett. 92, 013002 (2004)

    Article  ADS  Google Scholar 

  32. A.S. Kornev, B.A. Zon, Laser Phys. Lett. 4, 588 (2007)

    Article  ADS  Google Scholar 

  33. A. Shahbaz, C. Müller, T.J. Bürvenich, C.H. Keitel, Nucl. Phys. A 821, 106 (2009)

    Article  ADS  Google Scholar 

  34. D. Habs, T. Tajima, J. Schreiber, C.P.J. Barty, M. Fujiwara, P.G. Thirolf, Eur. Phys. J. D 55, 279 (2009)

    Article  ADS  Google Scholar 

  35. P. Kalm, J. Bergou, Phys. Rev. C 34, 1024 (1986)

    Article  ADS  Google Scholar 

  36. D. Kis, P. Kalm, T. Keszthelyi, J. Szivos, Phys. Rev. A 81, 013421 (2010)

    Article  ADS  Google Scholar 

  37. J.C. Solem, L.C. Beidenharn, J. Quant. Spectrosc. Radiat. Transfer 40, 707 (1988)

    Article  ADS  Google Scholar 

  38. J.F. Berger, D.M. Gogny, M.S. Weiss, Phys. Rev. A 43, 455 (1991)

    Article  ADS  Google Scholar 

  39. A. Dadi, C.H. Muller, Phys. Rev. C 85, 064604 (2012)

  40. J.Z. Kaminski, F. Ehlotzky, J. Mod. Opt. 50, 621 (2003)

    Article  ADS  Google Scholar 

  41. S. Rashid, J. Phys. 39, 065203 (2012)

    Article  Google Scholar 

  42. S. Shafiq, A. Shahbaz, Eur (Phys, J. D., 2019)

    Google Scholar 

  43. Jintao Qi, Tao Li, Xu. Ruihua, Fu. Libin, Xu. Wang, Phys. Rev. C 99, 044610 (2019)

  44. S. Misicus, M. Rizea, Open Phys, 14, 81–87 (2016)

  45. H.R. Reiss, Phys. Rev. C 27, 1199 (1983)

  46. A.I. Nikishov, V.I. Ritus, Zh. Eksp, Teor. Fiz. 85, 24–40 (1983)

  47. L. Durand, III., Phys. Rev 135, B310 (1964)

  48. S.L. Kakani, S. Kakani, Nuclear and Particle Physics, 2nd edn. (Viva Books Private Limited, New Dehli, India, 2008)

    Google Scholar 

  49. G.K. Schenter, P. Vogel, A simple Approximation of the Fermi Function in Nuclear Beta Decay. Nuclear Sci. Eng. 83(3), 393–396 (1983)

    Article  Google Scholar 

  50. A. Shahbaz, C. Muller, T.J. Burvenich, C.H. Keitel, Nucl. Phys. A 82, 106 (2009)

    Article  ADS  Google Scholar 

  51. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, USA, 1998)

    MATH  Google Scholar 

  52. E. Akhmedov, Phys. Atom. Nucl. 74, 1299 (2011)

    Article  ADS  Google Scholar 

  53. H. M. C. Cortés, C. Müllera, C. H. Keitel, A. Pálffy, Phys. Lett. B 723, issues 4-5, (2013)

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first two authors are the students who have done the calculations. The third one has helped in the write-up and discussion. The fourth one is the group leader who originated the idea.

Corresponding author

Correspondence to Atif Shahbaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, N., Rehman, Z.U., Shafiq, S. et al. Dynamic behaviour of beta decay constant in H-like atoms with intense laser. Eur. Phys. J. D 76, 78 (2022). https://doi.org/10.1140/epjd/s10053-022-00402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00402-w

Navigation