Skip to main content
Log in

On the temperature of large biomolecules in ion-storage rings

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A method to determine the temperature of molecular ions in an ion-storage ring is presented. Molecular ions were repeatedly irradiated by laser pulses over several hundred milliseconds, and the rate of fragmentation was used to determine the temperature of the photoexcited ions. The initial temperature of the ions before photoabsorption was in turn found from the microcanonical caloric curve for the molecule of interest. The temperature evolution of the protonated GFP chromophore in the ELISA storage ring was found for different starting conditions by this method. We find that the initial temperature of the ions when entering the ring depends on the ion-trap temperature and the amount of buffer gas used in the trap. In particular, collisional heating during acceleration after the ion trap can be significant. Protonated GFP chromophores, produced under different conditions, were used to determine temperature effects on the gas-phase absorption spectra.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. E. Herbst, W. Klemperer, Astrophys. J. 185, 505 (1973). https://doi.org/10.1086/152436

    Article  ADS  Google Scholar 

  2. M.T. Bell, T.P. Softley, Mol. Phys. 107(2), 99 (2009). https://doi.org/10.1080/00268970902724955

    Article  ADS  Google Scholar 

  3. T.R. Rizzo, J.A. Stearns, O.V. Boyarkin, Int. Rev. Phys. Chem. 28(3), 481–515 (2009). https://doi.org/10.1080/01442350903069931

    Article  Google Scholar 

  4. P. Yu, L.W. Cheuk, I. Kozyryev, J.M. Doyle, New J. Phys. (2019). https://doi.org/10.1088/1367-2630/ab428d

  5. T.R. Rizzo, O.V. Boyarkin, (2014) pp. 43–97 . https://doi.org/10.1007/128_2014_579

  6. M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42(15), 154009 (2009). https://doi.org/10.1088/0953-4075/42/15/154009

    Article  ADS  Google Scholar 

  7. P.F. Staanum, K. Højbjerre, P.S. Skyt, A.K. Hansen, M. Drewsen, Nat. Phys. 6(4), 271–274 (2010). https://doi.org/10.1038/nphys1604

    Article  Google Scholar 

  8. F. Stienkemeier, K.K. Lehmann, J. Phys. B: At. Mol. Opt. Phys. 39(8), R127 (2006). https://doi.org/10.1088/0953-4075/39/8/r01

    Article  ADS  Google Scholar 

  9. D. Gerlich, J. Chem. Soc., Faraday Trans. 89, 2199 (1993). https://doi.org/10.1039/FT9938902199

    Article  Google Scholar 

  10. M. Lange, M. Froese, S. Menk, J. Varju, R. Bastert, K. Blaum, J.R.C. López-Urrutia, F. Fellenberger, M. Grieser, R. Von Hahn et al., Rev. Sci. Instrum. 81(5), 055105 (2010). https://doi.org/10.1063/1.3372557

    Article  ADS  Google Scholar 

  11. R.D. Thomas, H.T. Schmidt, G. Andler, M. Björkhage, M. Blom, L. Brönnholm, E. Böckström, H. Danared, S. Das, N. Haag et al., Rev. Sci. Instrum. 82(6), 065112 (2011). https://doi.org/10.1063/1.3602928

    Article  ADS  Google Scholar 

  12. J.U. Andersen, P. Hvelplund, S.B. Nielsen, S. Tomita, H. Wahlgreen, S.P. Møller, U.V. Pedersen, J.S. Forster, T.J.D. Jørgensen, Rev. Sci. Instrum. 73(3), 1284–1287 (2002). https://doi.org/10.1063/1.1447305

    Article  ADS  Google Scholar 

  13. H.B. Pedersen, A. Svendsen, L.S. Harbo, H.V. Kiefer, H. Kjeldsen, L. Lammich, Y. Toker, L.H. Andersen, Rev. Sci. Instrum. 86(6), 063107 (2015). https://doi.org/10.1063/1.4922826

    Article  ADS  Google Scholar 

  14. A. Svendsen, H.V. Kiefer, H.B. Pedersen, A.V. Bochenkova, L.H. Andersen, J. Am. Chem. Soc. 139(25), 8766–8771 (2017). https://doi.org/10.1021/jacs.7b04987

    Article  Google Scholar 

  15. H.V. Kiefer, E. Gruber, J. Langeland, P.A. Kusochek, A.V. Bochenkova, L.H. Andersen, Nature Commun. (2019). https://doi.org/10.1038/s41467-019-09225-7

    Article  Google Scholar 

  16. E. Gruber, C. Kjær, S.B. Nielsen, L.H. Andersen, Chem. Eur. J. 25(39), 9153–9158 (2019). https://doi.org/10.1002/chem.201901786

    Article  Google Scholar 

  17. J.U. Andersen, E. Bonderup, K. Hansen, J. Chem. Phys. 114(15), 6518–6525 (2001). https://doi.org/10.1063/1.1357794

    Article  ADS  Google Scholar 

  18. J.U. Andersen, H. Cederquist, J.S. Forster, B.A. Huber, P. Hvelplund, J. Jensen, B. Liu, B. Manil, L. Maunoury, S. Brøndsted Nielsen et al., Phys. Chem. Chem. Phys. 6(10), 2676–2681 (2004). https://doi.org/10.1039/b316845j

    Article  Google Scholar 

  19. L.H. Andersen, H. Bluhme, S. Boye, T.J.D. Jørgensen, H. Krogh, I.B. Nielsen, S. Brøndsted Nielsen, A. Svendsen, Phys. Chem. Chem. Phys. 6, 2617 (2004). https://doi.org/10.1039/B315763F

    Article  Google Scholar 

  20. M.H. Stockett, J.N. Bull, J.T. Buntine, E. Carrascosa, E.K. Anderson, M. Gatchell, M. Kaminska, R.F. Nascimento, H. Cederquist, H.T. Schmidt et al., Eur. Phys. J. D 74(7), 150 (2020). https://doi.org/10.1140/epjd/e2020-10052-5

    Article  ADS  Google Scholar 

  21. K. Hansen, J.U. Andersen, P. Hvelplund, S.P. Møller, U.V. Pedersen, V.V. Petrunin, Phys. Rev. Lett. 87, 123401 (2001). https://doi.org/10.1103/PhysRevLett.87.123401

    Article  ADS  Google Scholar 

  22. R. Otto, A. Von Zastrow, T. Best, R. Wester, Phys. Chem. Chem. Phys. 15(2), 612–618 (2013). https://doi.org/10.1039/c2cp43186f

    Article  Google Scholar 

  23. C. Meyer, A. Becker, K. Blaum, C. Breitenfeldt, S. George, J. Göck, M. Grieser, F. Grussie, E. Guerin, R. Von Hahn et al., Phys. Rev. Lett. (2017). https://doi.org/10.1103/physrevlett.119.023202

    Article  Google Scholar 

  24. H.T. Schmidt, G. Eklund, K.C. Chartkunchand, E.K. Anderson, M. Kamińska, N. De Ruette, R. Thomas, M.K. Kristiansson, M. Gatchell, P. Reinhed et al., Phys. Rev. Lett. (2017). https://doi.org/10.1103/physrevlett.119.073001

    Article  Google Scholar 

  25. D.C. Prasher, Trends Genet. 11(8), 320–323 (1995). https://doi.org/10.1016/s0168-9525(00)89090-3

    Article  Google Scholar 

  26. M. Ormö, A.B. Cubitt, K. Kallio, L.A. Gross, R.Y. Tsien, S.J. Remington, Science 273(5280), 1392 (1996). https://doi.org/10.1126/science.273.5280.1392

    Article  ADS  Google Scholar 

  27. R.Y. Tsien, Annu. Rev. Biochem. 67(1), 509–544 (1998). https://doi.org/10.1146/annurev.biochem.67.1.509

    Article  Google Scholar 

  28. M. Zimmer, Chem. Rev. 102(3), 759–782 (2002). https://doi.org/10.1021/cr010142r

    Article  Google Scholar 

  29. J. Lippincott-Schwartz, G.H. Patterson, Science 300(5616), 87 (2003). https://doi.org/10.1126/science.1082520

    Article  ADS  Google Scholar 

  30. L.H. Andersen, A. Lapierre, S.B. Nielsen, I.B. Nielsen, S.U. Pedersen, U.V. Pedersen, S. Tomita, Eur. Phys. J. D 20(3), 597 (2002). https://doi.org/10.1140/epjd/e2002-00141-0

    Article  ADS  Google Scholar 

  31. S.P. Møller, Nuclear instruments and methods in physics research section a: accelerators. Spectromet. Detect. Associated Equip. 394(3), 281 (1997). https://doi.org/10.1016/s0168-9002(97)00673-6

    Article  Google Scholar 

  32. S.E. Stein, B.S. Rabinovitch, J. Chem. Phys. 58(6), 2438 (1973). https://doi.org/10.1063/1.1679522

    Article  ADS  Google Scholar 

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT (2004)

  34. A.A. Granovsky, Firefly version 8. www.http://classic.chem.msu.su/gran/firefly/index.html

  35. M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jenson, S. Koseki, N. Matsunaga, K. Nguyen, S. Su, T. Windus, M. Dupuis, J. Montgomery, J. Comp. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by APR, RT, and LHA, and executed by APR and RT. Data were analyzed by APR. Ab initio calculations were conducted by DAF and AVB. All authors have discussed the results and commented on the paper, written primarily by APR and LHA.

Corresponding author

Correspondence to Lars H. Andersen.

Ethics declarations

Supplementary information

This article has an accompanying supplementary file.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 363 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, A.P., Teiwes, R., Farkhutdinova, D.A. et al. On the temperature of large biomolecules in ion-storage rings. Eur. Phys. J. D 76, 76 (2022). https://doi.org/10.1140/epjd/s10053-022-00400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00400-y

Navigation