Skip to main content
Log in

Quantifying quantum correlations in a double cavity–magnon system

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys. B: At. Mol. Opt. Phys. 53:065402, 2020), it has been investigated about the logarithmic negativity as a measure of quantum entanglement between two magnon modes versus various system parameters. Motivated by this, we will look at two different types of quantum correlations (i.e., entanglement and discord) in two-mode Gaussian subsystems (cavity–cavity modes and magnon–magnon modes). We analyze the robustness of these correlations with respect to the physical and environmental parameters—temperature, squeezing and the cavity–magnon coupling—of the two studied subsystems. For this, we use the Gaussian Bures distance to quantify entanglement and the Gaussian geometric discord (GGD) to quantify correlations beyond entanglement. The entanglement of the two bi-mode subsystems proves to be more sensitive to thermal noise. In particular, under the effect of temperature, the magnon–magnon entanglement degrades much more than the cavity–cavity entanglement. In addition, the GGD is found to be more robust—in both subsystems—against thermal noise, and it can be detected even for high values of temperatures. Also, we show that nonzero quantum correlations can be captured even when entanglement vanishes completely in the two studied subsystems. Finally, two different types of entanglement transfer (i.e., light\(\rightarrow \)light and light\(\rightarrow \)matter) have been observed in the studied system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no available data to deposit.]

References

  1. E. Schrödinger, Math. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  3. E.A. Sete, A.A. Svidzinsky, H. Eleuch, Z. Yang, R.D. Nevels, M.O. Marlan, J. Mod. Opt. 57, 1311 (2010)

    Article  ADS  Google Scholar 

  4. H. Eleuch, Int. J. Mod. Phys. B 24, 5653 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotech. 4, 820 (2009)

    Article  ADS  Google Scholar 

  6. J.S. Bell, Phys. Phys. Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  7. L.H. Sun, G.X. Li, Z. Ficek, Phys. Rev. A 85, 022327 (2012)

    Article  ADS  Google Scholar 

  8. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. V. Scarani, S. Iblisdir, N. Gisin, A. Acin, Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  Google Scholar 

  11. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. T.A. Palomaki, J.D. Teufel, R.W. Simmonds, K.W. Lehnert, Science 342, 710 (2013)

    Article  ADS  Google Scholar 

  13. R. Riedinger, S. Hong, R.A. Norte, J.A. Slater, J. Shang, A.G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher, Nature 530, 313 (2016)

    Article  ADS  Google Scholar 

  14. R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher, Nature 556, 473 (2018)

    Article  ADS  Google Scholar 

  15. S. Kotler, G.A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A. Kwiatkowski, S. Geller, S. Glancy, E. Knill, R.W. Simmonds, J. Aumentado, J.D. Teufel, Science 372, 622 (2021)

    Article  ADS  Google Scholar 

  16. C.F. Ockeloen-Korppi, E. Damskägg, J.M. Pirkkalainen, M. Asjad, A.A. Clerk, F. Massel, M.J. Woolley, M.A. Sillanpää, Nature 556, 478 (2018)

    Article  ADS  Google Scholar 

  17. X. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  18. D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura, Appl. Phys. Express 12, 070101 (2019)

    Article  ADS  Google Scholar 

  19. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  20. X. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  21. D. Zhang, X.M. Wang, T.F. Li, X.Q. Luo, W. Wu, F. Nori, J.Q. You, npj Quantum. Inf. 1, 1 (2015)

    Google Scholar 

  22. Z. Zhang, M.O. Scully, G.S. Agarwal, Phys. Rev. Res. 1, 023021 (2019)

    Article  Google Scholar 

  23. J.M.P. Nair, G.S. Agarwal, arXiv preprint arXiv:1905.07884 (2019)

  24. X. Zhang, C.L. Zou, N. Zhu, F. Marquardt, L. Jiang, H.X. Tang, Nat. Commun. 6, 1 (2015)

    ADS  Google Scholar 

  25. G.Q. Zhang, J.Q. You, Phys. Rev. B 99, 054404 (2019)

    Article  ADS  Google Scholar 

  26. C.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986)

    Article  ADS  Google Scholar 

  27. F.M. Cucchietti, D.A. Dalvit, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 91, 210403 (2003)

    Article  ADS  Google Scholar 

  28. G. Adesso, D. Girolami, Int. J. Quantum Inform. 9, 1773 (2011)

    Article  Google Scholar 

  29. C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J.M. Fink, S. Filipp, A. Wallraff, Phys. Rev. Lett. 107, 113601 (2011)

    Article  ADS  Google Scholar 

  30. J. El Qars, M. Daoud, R. Ahl Laamara, J. Mod. Opt. 65, 1584 (2018)

    Article  ADS  Google Scholar 

  31. M.S. Ding, L. Zheng, C. Li, Sci. Rep. 9, 1 (2019)

    Article  ADS  Google Scholar 

  32. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  33. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. A 99, 021801 (2019)

    Article  ADS  Google Scholar 

  34. J. Li, S.Y. Zhu, New J. Phys. 21, 085001 (2019)

    Article  ADS  Google Scholar 

  35. M. Yu, S.Y. Zhu, J. Li, J. Phys. B At. Mol. Opt. Phys. 53, 065402 (2020)

    Article  ADS  Google Scholar 

  36. J. Li, S. Gröblacher, Quantum Sci. Technol. 6, 024005 (2021)

  37. J.M. Nair, G.S. Agarwal, Appl. Phys. Lett. 117, 084001 (2020)

    Article  ADS  Google Scholar 

  38. G. Adesso, F. Illuminati, J. Phys. A Math. Theor. 40, 7821 (2007)

    Article  ADS  Google Scholar 

  39. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  40. E.P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, Phys. Rev. Lett. 109, 250502 (2012)

    Article  ADS  Google Scholar 

  41. E.A. Sete, H. Eleuch, C.R. Ooi, J. Opt. Soc. Am. B 31, 2821 (2014)

    Article  ADS  Google Scholar 

  42. T. Bromley, M. Cianciaruso, G. Adesso, Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  43. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  44. P. Marian, T.A. Marian, Phys. Rev. A 77, 062319 (2008)

    Article  ADS  Google Scholar 

  45. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  Google Scholar 

  46. A. Uhlmann, Rep. Math. Phys. 24, 229 (1986)

  47. R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Abdelkader Hidki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidki, A., Lakhfif, A., El Qars, J. et al. Quantifying quantum correlations in a double cavity–magnon system. Eur. Phys. J. D 76, 64 (2022). https://doi.org/10.1140/epjd/s10053-022-00377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00377-8

Navigation