Skip to main content
Log in

Micrometre double-quantum ionization of Rydberg hydrogen using linearly and circularly polarized light

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Double-quantum ionization for Rydberg hydrogen is studied. The variation of ionization rates with wavelength is shown for linearly polarized (LP) and circularly polarized (CP) radiations. For performing the infinite summations over the intermediate states, pseudostate summation technique (PST) is used which is fast and efficient. Presently, the numerical values of two-quantum and three-quantum ionization rates from ground state and metastable 2s state only are available in the literature. The present work reports the calculations for the double-quantum ionization rates from higher excited levels of hydrogen. Numerical data is also presented for comparison with future experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data that support the findings of this study are included within the article.]

References

  1. F. Gallagher, Rydberg Atoms (Cambridge University Press, NY, 1994)

    Book  Google Scholar 

  2. F. Merkt, Chimia 54, 89 (2009)

    Google Scholar 

  3. M. T. Simons, B. Alexandra Artusio-Glimpse, K. Robinson , N. Prajapati and C. L. Holloway, Measurement : Sensors 18, 100273 (2021).

  4. C.S. Adams, J.D. Pritchard, J.P. Shaffer, J. Phys. B 53, 012002 (2019)

    Article  ADS  Google Scholar 

  5. A. Chopinaud, J.D. Pritchard, Phys. Rev. Applied 16, 024008 (2021)

    Article  ADS  Google Scholar 

  6. M.D. Lukin, Rev. Mod. Phys. 75, 457 (2003)

    Article  ADS  Google Scholar 

  7. M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  8. J. Ahn, C. Rangan, D.N. Hutchinson, P.H. Bucksbaum, Phys. Rev. A 66, 022312 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Mokhberi, M. Hennrich, F. Schmidt-Kaler, Adv. At. Mol. Opt. Phys. 4, 69 (2020)

    Google Scholar 

  10. B.H. Bebb, A. Gold, Phys. Rev. 143, 1 (1966)

    Article  ADS  Google Scholar 

  11. A. Gold, B.H. Bebb, Phys. Rev. Lett. 14, 60 (1965)

    Article  ADS  Google Scholar 

  12. W. Zernik, R.W. Klopfenstein, J. Math. Phys. 6, 262 (1965)

    Article  ADS  Google Scholar 

  13. W. Zernik, Phys. Rev. A 135, A51 (1964)

    Article  ADS  Google Scholar 

  14. Y. Gontier, M. Trahin, Phys. Rev. A 4, 1896 (1971)

    Article  ADS  Google Scholar 

  15. Y. Gontier, M. Trahin, Phys. Rev. A 7, 2069 (1973)

    Article  ADS  Google Scholar 

  16. F.T. Chan, C.L. Tang, Phys. Rev. 185, 42 (1969)

    Article  ADS  Google Scholar 

  17. E. Arnous, S. Klarsfeld, S. Wane, Phys. Rev. A 7, 1559 (1973)

    Article  ADS  Google Scholar 

  18. S. Klarsfeld, A. Maquet, Phys. Lett. 73A, 100 (1979)

    Article  ADS  Google Scholar 

  19. A. Maquet, V. Veniard, T.A. Marian, J. Phys. B. 31, 3743 (1998)

    Article  ADS  Google Scholar 

  20. E. Karule, Adv. At. Mol. Opt. Phys. 27, 265 (1991)

    Article  ADS  Google Scholar 

  21. E. Karule, J. Phys. B 11, 441 (1978)

    Article  ADS  Google Scholar 

  22. B. Gao, A.F. Starace, Phys. Rev. Lett. 61, 404 (1988)

    Article  ADS  Google Scholar 

  23. M. Aymar, M. Crance, J. Phys. B 13, L287 (1980)

    Article  ADS  Google Scholar 

  24. R.J. Drachmann, A.K. Bhatia, A.A. Shabazz, Phys. Rev. A. 42, 6333 (1990)

    Article  ADS  Google Scholar 

  25. A.T. Stelbovics, J. Phys. B 22, L159 (1989)

    Article  ADS  Google Scholar 

  26. A.T. Stelbovics, Aust. J. Phys. 44, 241 (1991)

    Article  ADS  Google Scholar 

  27. R. Kundliya, V. Prasad, M. Mohan, J. Phys. B 33, 5263 (2000). (and references therein)

    Article  ADS  Google Scholar 

  28. R. Kundliya, K. Batra, M. Mohan, J. Phys. B 34, 4083 (2001). (and references therein)

    Article  ADS  Google Scholar 

  29. R. Joshi, Phys. Lett. A. 361, 352 (2007)

    Article  ADS  Google Scholar 

  30. S. Klarsfeld, Lett. Nuovo Cimento 3, 395 (1970)

    Article  Google Scholar 

  31. G. Laplanche, A. Durrieu, Y. Flank, M. Jaouen, A. Rachman, J. Phys. B. 9, 1263 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Joshi.

Ethics declarations

Conflict of interest

The author has no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R. Micrometre double-quantum ionization of Rydberg hydrogen using linearly and circularly polarized light. Eur. Phys. J. D 76, 37 (2022). https://doi.org/10.1140/epjd/s10053-022-00366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00366-x

Navigation