Skip to main content
Log in

Phase control in photodissociation of H2 using pairs (ω,ω) of chirped laser fields

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We discuss the phase control in photodissociation of H2 from the ground level X(v = 0, j = 0) to the continua of the GK and I electronic states using pairs of phase-locked laser fields of same frequencies. At the first step, a circularly polarized and shaped laser pulse of frequency ω1 near resonantly couples the ground level X(v = 0, j = 0) with the two closely spaced nonadiabatically coupled intermediate levels B(v = 14, j = 1) and C(v = 3, j = 1). At the second step, these two intermediate levels are coupled to the dissociative continua by a linearly polarized and shaped laser pulse of suitable frequency ω2. The single-pulse laser field of ω1 frequency is considered to be replaced by a pair (ω1,ω1) of chirped and phase-locked (ϕ1) laser field at the first step, while for the second step, the laser pulse of ω2 frequency is considered to be replaced by a pair (ω2,ω2) of chirped and phase-locked (ϕ2) laser field. We studied the phase control of the dissociation dynamics for all possible combinations of laser fields of these two steps. Variations of the relative phase differences between the two laser fields of the phase-locked shaped laser pulse pair (ω1,ω1) and (ω2,ω2) result in the control of the photodissociation dynamics of the hydrogen molecule. We demonstrate heavily enhanced phase controllability of the dissociation dynamics due to the chirping of the laser fields. Nonadiabatic interactions between the intermediate levels and predissociating bound levels have been incorporated into our calculation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No associated data is being deposited.]

References

  1. C. Brif, R. Chakrabarti and H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010)

  2. M. Shapiro, P. Brumer, Quantum control of molecular processes-2nd ed. WileyVCH Verlag GmbH & Co. KGaA (2012)

  3. L. Giannessi et al., Coherent control schemes for the photoionization of neon and helium in the Extreme Ultraviolet spectral region. Sci. Rep. 8, 7774 (2018)

    Article  ADS  Google Scholar 

  4. D. Keefer, R. de Vivie-Riedle, Pathways to new applications for quantum control. Quantum Acc. Chem. Res. 51, 2279 (2018)

    Article  Google Scholar 

  5. M. Sharipo, J.W. Hepburn, P. Brumer, Simplified laser control of unimolecular reactions: simultaneous (ω1, ω3) excitation. Chem. Phys. Lett. 149, 451 (1988)

    Article  ADS  Google Scholar 

  6. J.S. Melinger, S.R. Gandhi, A. Hariharan, D. Goswami, W.S. Warren, Adiabatic population transfer with frequency-swept laser pulses. J. Chem. Phys. 101, 6439 (1994)

    Article  ADS  Google Scholar 

  7. C.K. Chan, P. Brumer, M. Shapiro, Coherent radiative control of IBr photodissociation via simultaneous (ω1, ω3) excitation. J. Chem. Phys. 94, 2688 (1991)

    Article  ADS  Google Scholar 

  8. C. Chen, Y.-Y. Yin, D. S. Elliott, Interference between optical transitions, Phys. Rev. Lett. 64, 507 (1990)

  9. C. Chen, D.S. Elliott, Measurements of optical phase variations using interfering multiphoton ionization processes. Phys. Rev. Lett. 65, 1737 (1990)

    Article  ADS  Google Scholar 

  10. Y.Y. Yin, C. Chen, D.S. Elliott, A.V. Smith, Asymmetric photoelectron angular distributions from interfering photoionization processes. Phys. Rev. Lett. 69, 2353 (1992)

    Article  ADS  Google Scholar 

  11. K.C. Prince et al., Coherent control with a short-wavelength Free Electron Laser. Nat. Photonics 10, 176 (2016)

    Article  ADS  Google Scholar 

  12. N. Hartmann, J.M. Glownia, Attosecond coherent control at FELs. Nat. Photonics 10, 148 (2016)

    Article  ADS  Google Scholar 

  13. A. N.Grum-Grzhimailo, E. V.Gryzlova, E. I.Staroselskaya, J. Venzke, K. Bartschat, Interfering one-photon and two-photon ionization by femtosecond VUV pulses in the region of an intermediate resonance. Phys. Rev. A 91, 063418 (2015)

  14. E. V. Gryzlova, A. N. Grum-Grzhimailo, E. I.Staroselskaya, N. Douguet, K. Bartschat, Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon. Phys. Rev. A 97, 013420 (2018)

  15. S.M. Park, S.-P. Lu, R.J. Gordon, Coherent laser control of the resonance-enhanced multiphoton ionization of HCl. J. Chem. Phys. 94, 8622 (1991)

    Article  ADS  Google Scholar 

  16. L. Zhu, V. Kleiman, X. Li, S.-P. L, K. Trentelman, R. J. Gordon, Coherent laser control of the product distribution obtained in the photoexcitation of Hl. Science 270, 77 (1995)

  17. B. Sheehy, B. Walker, L.F. DiMauro, Phase control in the two-color photodissociation of HD+. Phys. Rev. Lett. 74, 4799 (1995)

    Article  ADS  Google Scholar 

  18. T. Nakajima, P. Lambropoulos, S. Cavalieri, M. Matera, Modulating ionization through phase control. Phys. Rev. A 46, 7315 (1992)

    Article  ADS  Google Scholar 

  19. T. Nakajima, P. Lambropoulos, Manipulation of the line shape and final products of autoionization through the phase of the electric fields. Phys. Rev. Lett. 70, 1081 (1993)

    Article  ADS  Google Scholar 

  20. T. Nakajima, P. Lambropoulos, Effects of the phase of the laser field on autoionization. Phys. Rev. A 50, 595 (1994)

    Article  ADS  Google Scholar 

  21. P. Lambropoulos, T. Nakajima, Origin of the phase lag in the modulation of photoabsorption products under two-color fields. Phys. Rev. Lett. 82, 2266 (1999)

    Article  ADS  Google Scholar 

  22. Avijit Datta, S. S. Bhattacharyya, Bongsoo Kim, Effects of chirping on the dissociation dynamics of H2 in a two-frequency laser field. Phys. Rev. A 65, 043404 (2002)

  23. A. Csehi, Control of the populations and phases of two-level quantum systems by a single frequency-chirped laser pulse. J. Phys. B: At. Mol. Opt. Phys. 52, 195004 (2019)

  24. A. Csehi, M. Kowalewski, G. J. Halász, Á. Vibók, Ultrafast dynamics in the vicinity of quantum light-induced conical intersections. New J. Phys. 21, 093040 (2019)

  25. Avijit Datta, Phase Control in Coherent Population Distribution in Molecules. J. Mod. Optics 65:10, 1180 (2018)

  26. A. Datta, Production of excited hydrogen molecule in a two-frequency chirped laser field. Eur. Phys. J. D 71, 29 (2017)

    Article  ADS  Google Scholar 

  27. Z. Sun, C. Wang, Y. Zheng, C. Yang, Control of photodissociation of the NaI molecule via pulse chirping. Phys. Chem. Chem. Phys. 20, 20957 (2018)

    Article  Google Scholar 

  28. J.C. Davis, W.S. Warren, Selective excitation of high vibrational states using Raman chirped adiabatic passage. J. Chem. Phys. 110, 4229 (1999)

    Article  ADS  Google Scholar 

  29. F. L´egar´e, S. Chelkowski*, A. D. Bandrauk, Laser pulse control of Raman processes by chirped non-adiabatic passage. J. Raman Spectrosc. 31, 15–23 (2000)

  30. A. Csehi, G. J. Halász, L. S. Cederbaumc, Á. Vibók,Towards controlling the dissociation probability by light-induced conical intersections. Faraday Discuss. 194, 479–493 (2016)

  31. S. Sen, S. Ghosh, S. S. Bhattacharyya, Samir Saha, Rotational branching in population transfer in H2 by chirped adiabatic Raman passage. J. Chem. Phys. 116, 581 (2002)

  32. A. Datta, S. S. Bhattacharyya, S. Lee, Bongsoo Kim, Atomic and molecular stabilization in two-frequency laser fields. J. Chem. Phys. 119, 2083 (2003)

  33. A. Datta, S. S. Bhattacharyya, Polarization and intensity effects in two-photon dissociation of H2 in two-frequency laser fields. Phys. Rev. A 63, 023410 (2001)

  34. L. Biró, A. Csehi, Time-dependent state populations with and without the rotating wave approximation: a model-based study. J. Mod. Optics 66, 119 (2018)

    Article  ADS  Google Scholar 

  35. A. García-Vela, Control of the fragment state distributions produced upon decay of an isolated resonance state. J. Chem. Phys. 144(14), 141102 (2016)

  36. A. Serrano-Jiménez, L. Bañares, A. García-Vela, Weak-field coherent control of photodissociation in polyatomic molecules. Phys. Chem. Chem. Phys. 21(15), 7885 (2019)

    Article  Google Scholar 

  37. Avijit Datta (Unpublished computational results with an appropriate time delay of the ω2 field with respect to the ω1 field show an enhancement of the dissociation probability for the present H2 system)

  38. W. Zhang, et. al., Photon-number-resolved asymmetric dissociative single ionization of H2. Phys. Rev. A 96, 033405 (2017)

  39. H. Xu, et. al., Coherent control of the dissociation probability of H2+ in ω-3ω two-color fields. Phys. Rev. A 93, 063416 (2016)

  40. Avijit Datta, Phase control in photodissociation of H2 using ω1 and its third harmonics ω3 (Under preparation)

Download references

Acknowledgements

AD acknowledges Department of Physics, Shibpur Dinobundhoo Institution (College), Shibpur, Howrah-711 102, India, for some facilities.

Funding

No official funding was obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Datta.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A. Phase control in photodissociation of H2 using pairs (ω,ω) of chirped laser fields. Eur. Phys. J. D 76, 41 (2022). https://doi.org/10.1140/epjd/s10053-022-00358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00358-x

Navigation