Skip to main content
Log in

New routes in the formation of positively charged fragments upon electron attachment

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electron-driven reactions of CF\(_3\)CH\(_2\)F have been studied focusing on the formation of the parent cation, CF\(_3^+\) and CH\(_2\)F\(^+\) (C–C bond cleavage) fragments as a function of the electron energy. For the three referred cations, an unpredicted shoulder structure is observed in the ion yield between 12 and 20 eV, indicating a resonant process (electron attachment). Viewing the observations as the result of a competition between the expected dissociative electron ionization and a dissociative electron attachment, we propose a new route where the formation of the transient anion, under two autodetachments, ultimately triggers the formation of positively charged fragments. The reaction \(e^-+\text {AB}\rightarrow \text {AB}^{-*}\rightarrow \text {AB}^{*}+e^ -\rightarrow \text {A}^++\text {B}+2e^-\) is supported by both experimental data and scattering calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. Q.-B. Lu, Giant enhancement of electron-induced dissociation of chlorofluorocarbons coadsorbed with water or ammonia ices: implications for atmospheric ozone depletion. J. Chem. Phys. 111(7), 2861–2864 (1999)

    Article  ADS  Google Scholar 

  2. E. Illenberger, H.-U. Scheunemann, H. Baumgärtel, Negative ion formation in CF2Cl2, CF3Cl and CFCl3 following low energy (0–10 eV) impact with near monoenergetic electrons. Chem. Phys. 37(1), 21–31 (1979)

    Article  Google Scholar 

  3. J.D. Skalny, S. Matejcik, A. Kiendler, A. Stamatovic, T.D. Märk, Dissociative electron attachment to ozone using a high-resolution crossed beams technique. Chem. Phys. Lett. 255(1), 112–118 (1996)

    Article  ADS  Google Scholar 

  4. L.G. Christophorou, J.K. Olthoff, Electron Interactions with C2F6. J. Phys. Chem. Ref. Data 27(1), 1–29 (1998)

    Article  ADS  Google Scholar 

  5. G. Denifl, D. Muigg, I. Walker, P. Cicman, S. Matejcik, J.D. Skalny, A. Stamatovic, T.D. Märk, Dissociative electron attachment to CF2Cl2. Czech J. Phys. 49(3), 383–392 (1999)

    Article  ADS  Google Scholar 

  6. J. Langer, S. Matt, M. Meinke, P. Tegeder, A. Stamatovic, E. Illenberger, Negative ion formation from low energy (0–15 eV) electron impact to CF2Cl2 under different phase conditions. J. Chem. Phys. 113(24), 11063–11070 (2000)

    Article  ADS  Google Scholar 

  7. M.N. Hedhili, M. Lachgar, Y. Le Coat, R. Azria, M. Tronc, Q.B. Lu, T.E. Madey, Low-energy electron-induced processes in condensed CF2Cl2 films. J. Chem. Phys. 114(4), 1844–1850 (2001)

    Article  ADS  Google Scholar 

  8. J. Pereira-Da-Silva, R. Rodrigues, J. Ramos, C. Brígido, A. Botnari, M. Silvestre, J. Ameixa, M. Mendes, F. Zappa, S.J. Mullock, J.M.M. Araújo, M.T.N. do Varella, L.M. Cornetta, F. Ferreira da Silva, Electron driven reactions in tetrafluoroethane: positive and negative ion formation. J. Am. Soc. Mass Spectrom. 32(6), 1459–1468 (2021)

  9. E. Marotta, C. Paradisi, G. Scorrano, An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure. J. Mass Spectrom. 39(7), 791–801 (2004)

  10. P.G. Simmonds, S. O’Doherty, J. Huang, R. Prinn, R.G. Derwent, D. Ryall, G. Nickless, D. Cunnold, Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1,1-difluoroethane using automated in-situ gas chromatography-mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997. J. Geophys. Res.: Atmos. 103(D13), 16029–16037 (1998)

  11. G. Li, M. Eisele, H. Lee, Y. Hwang, R. Radermacher, Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy 68, 819–831 (2014)

    Article  Google Scholar 

  12. G.H. Wannier, The threshold law for single ionization of atoms or ions by electrons. Phys. Rev. 90, 817–825 (1953)

    Article  ADS  MATH  Google Scholar 

  13. P.M. Stone, Y.K. Kim, An overview of the BEB method for electron-impact ionization of atoms and molecules. Surf. Interface Anal. 37(11), 966–968 (2005)

    Article  Google Scholar 

  14. O. Ingolfson. Low-energy Electrons: Fundamentals and applications. Jenny Stanford Publishing (2019)

  15. J. Simons, Molecular anions. J. Phys. Chem. A 112(29), 6401–6511 (2008)

    Article  Google Scholar 

  16. F. Ferreira da Silva, C. Matias, D. Almeida, G. García, O. Ingólfsson, H.D. Flosadóttir, B. Ómarsson, S. Ptasinska, B. Puschnigg, P. Scheier, P. Limão-Vieira, S. Denifl, NCO-, a key fragment upon dissociative electron attachment and electron transfer to pyrimidine bases: site selectivity for a slow decay process. Journal of the American Society for Mass Spectrometry 24(11), 1787–1797 (2013)

  17. D. Davis, V.P. Vysotskiy, Y. Sajeev, L.S. Cederbaum, Electron impact catalytic dissociation: two-bond breaking by a low-energy catalytic electron. Angew. Chem. Int. Ed. 50(18), 4119–4122 (2011)

    Article  Google Scholar 

  18. K.-M. Weitzel, J. Mähnert, M. Penno, ZEKE-PEPICO investigations of dissociation energies in ionic reactions. Chem. Phys. Lett. 224(3), 371–380 (1994)

    Article  ADS  Google Scholar 

  19. T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. Märk, Threshold electron impact ionization of carbon tetrafluoride, trifluoromethane, methane and propane. J. Phys. B: At. Mol. Opt. Phys. 33(20), 4263–4283 (2000)

    Article  ADS  Google Scholar 

  20. E.P. Wigner, On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002 (1948)

    Article  ADS  MATH  Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox. Gaussian 09, Revision A.02. 2016. Gaussian Inc., Wallingford

  22. K. Takatsuka, V. McKoy, Extension of the Schwinger variational principle beyond the static-exchange approximation. Phys. Rev. A 24(5), 2473–2480 (1981)

    Article  ADS  Google Scholar 

  23. M.A.P. Lima, V. McKoy, Aspects of the Schwinger multichannel variational formulation. Phys. Rev. A 38(1), 501 (1988)

    Article  ADS  Google Scholar 

  24. M.H.F. Bettega, L.G. Ferreira, M.A.P. Lima, Local-density norm-conserving pseudopotentials. Phys. Rev. A 47(2), 1111 (1993)

    Article  ADS  Google Scholar 

  25. G.B. Bachelet, D.R. Hamann, M. Schluter, Pseutopotentials that work: from H to Pu. Phys. Rev. B 26(8), 4199 (1982)

    Article  ADS  Google Scholar 

  26. R.F. da Costa, M.T.N. do Varella, M.H.F. Bettega, M.A.P. Lima., Recent advances in the application of the Schwinger multichannel method with pseudopotentials to electron-molecule collisions. Eur. Phys. J. D 69, 159 (2015)

  27. F. Kossoski, M.H.F. Bettega, Low-energy electron scattering from the AZA-derivatives of pyrrole, furan, and thiophene. J. Chem. Phys. 138, 2013 (2013)

  28. J.F. Stanton, R.J. Bartlett, The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98(9), 7029–7039 (1993)

    Article  ADS  Google Scholar 

  29. K. Andersson, P.A. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski, Second-order perturbation theory with a CASSCF reference function. The Journal of Physical Chemistry 94(14), 5483–5488 (1990)

    Article  Google Scholar 

  30. I.F. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J.J. Bao, S.I. Bokarev, N.A. Bogdanov, R.K. Carlson, L.F. Chibotaru, J. Creutzberg, N. Dattani, M.G. Delcey, S.S. Dong, A. Dreuw, L. Freitag, L.M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C.E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovačević, E. Giovanni, L. Manni, M. Lundberg, Y. Ma, S. Mai, J.P. Malhado, P.Å. Malmqvist, P. Marquetand, S.A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q.M. Phung, K. Pierloot, F. Plasser, M. Reiher, A.M. Sand, I. Schapiro, P. Sharma, C.J. Stein, L.K. Sørensen, D.G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T.A. Wesołowski, P.O. Widmark, S. Wouters, J. Alexander Zech, P. Zobel, R. Lindh, OpenMolcas, From source code to insight. J. Chem. Theory Comput. 15(11), 5925–5964 (2019)

  31. L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127(12), 124105 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor Vince McKoy for his contributions to the electron-molecule scattering field. MM, AN, JPS, RR and FFS acknowledge the Portuguese National Funding Agency FCT-MCTES through the research Grant PTDC/FIS-AQM/31215/2017. JPS and JMMA also acknowledge FCT-MCTES through the PhD Grant PD/BD/142768/2018 and contract 2020.00835.CEEIND. JMMA acknowledges the LIFE Programme of the EU (LIFE-4-Fgases, LIFE20-CCM/ES/001748). LMC acknowledges financial support from São Paulo Research Foundation (FAPESP), under Grant No. 2020/04822-9. This work was also supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020) as well as supported by Radiation Biology and Biophysics Doctoral Training Programme (RaBBiT, PD/00193/2012); UID/Multi/04378/2019 (UCIBIO); UID/FIS/00068/2020 (CEFITEC).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was prepared through contributions of all authors. MM and AN data acquisition together with JPS and RR in the analysis. MM, JPS, JMMA, FFS and LMC were involved in the first draft preparation; LMC performed quantum chemical calculations; FFS and LMC have done the final revision before submission. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to F. Ferreira da Silva or L. M. Cornetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, M., Nunes, A., Pereira-da-Silva, J. et al. New routes in the formation of positively charged fragments upon electron attachment. Eur. Phys. J. D 76, 19 (2022). https://doi.org/10.1140/epjd/s10053-022-00353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00353-2

Navigation