Skip to main content
Log in

Enhancing the optical absorption of Ga2SeTe Janus monolayer by adsorption of transition metals

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Optical and electronic properties of transition metal adsorbed Ga2SeTe Janus monolayer have been investigated in detail using DFT simulations. Results suggests that the pristine Janus monolayer of Ga2SeTe shows high absorption (− 15 × 104 1/cm) in few portions of the spectrum (− 380–430 nm). Metal adsorbed structures Ga2SeTe/Ni, Ga2SeTe/Pd, Ga2SeTe/Pt and Ga2SeTe/V results into redshift phenomena, which means that the absorption increases with the wavelength, or we can say that the absorption coefficient moved toward the red range of the spectrum. Absorption coefficient of Ni adsorbed structure is four times higher (− 60 × 104 1/cm) than the pristine Janus monolayer of Ga2SeTe. Considerably, higher absorption is also seen in other structures in the entire visible range (− 380–790 nm) of the spectrum. Dielectric function and refractive index of all metal adsorbed structures also calculated, and it is found that the absorption coefficient is in line with the dielectric constant. Due to its higher absorption peaks in the whole visible region, it is a potential candidate for optoelectronic applications and photovoltaic absorbers.

Graphical abstract

Absorption coefficient of Ni adsorbed structure is found to be four times higher (~ 60 × 104 (1/cm) than the pristine Janus monolayer of Ga2SeTe (− 15 × 104 1/cm). Higher absorption is also seen in other doped structures in the entire visible range (− 380–790 nm) of the spectrum. It is also observed that the red-shift phenomenon exists for all the metal adsorbed structures in comparison with pristine Ga2SeTe Janus monolayer. From the below shown Figure, we see that pristine Ga2SeTe monolayer has higher absorption peaks in the ultraviolet (UV) region (− 380–430 nm range) and shifts from ultraviolet region to visible (from higher energy to lower energy/ from left to right) region of the spectrum for metal adsorbed structures also called red-shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no separate data, all data is provided in the paper.]

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  3. F. Xia, D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010)

    Article  ADS  Google Scholar 

  4. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene-based gas sensors. Actuator. B Chem. 218, 160–183 (2015)

    Article  Google Scholar 

  5. S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, A graphene nanoprobe for rapid, sensitive, and multicolour fluorescent. DNA Anal. 20, 453–459 (2010)

    Google Scholar 

  6. F.-f Zhu, W.-j Chen, Y. Xu, C.-l Gao, D.-d Guan, C.-h Liu, D. Qian, S.-C. Zhang, J.-F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020 (2015)

    Article  ADS  Google Scholar 

  7. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  8. H.R. Jappor, Electronic and structural properties of gas adsorbed graphene-silicene hybrid as a gas sensor. J. Nanoelectron. Optoelectron. 12, 742–747 (2017)

    Article  Google Scholar 

  9. H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 732–2743 (2015)

    Article  Google Scholar 

  10. L. Mochalov, A. Nezhdanov, A. Logunov, M. Kudryashov, I. Krivenkov, A. Vorotyntsev, D. Gogova, A. Mashin, Optical emission of two-dimensional arsenic sulfide prepared by plasma. Superlattice. Microst. 11, 305–313 (2018)

    Article  ADS  Google Scholar 

  11. L. Mochalov, M. Kudryashov, A. Logunov, S. Zelentsov, A. Nezhdanov, A. Mashin, D. Gogova, G. Chidichimo, G.D. Filpo, Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach. Superlattice. Microst. 111, 1104–1112 (2017)

    Article  ADS  Google Scholar 

  12. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  Google Scholar 

  13. Z. Ni et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)

    Article  ADS  Google Scholar 

  14. X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014)

    Article  Google Scholar 

  15. Q.A. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics, and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  16. N.N. Hieu, V.V. Ilyasov, T.V. Vu, N.A. Poklonski, H.V. Phuc, L.T.T. Phuong, B.D. Hoi, C.V. Nguyen, First principles study of optical properties of molybdenum disulfide: from bulk to monolayer. Superlattice. Microst. 115, 10–18 (2018)

    Article  ADS  Google Scholar 

  17. H.R. Jappor, M.A. Habeeb, Tunable electronic and optical properties of GaS/GaSe van der Waals heterostructure. Curr. Appl. Phys. 18, 673–680 (2018)

    Article  ADS  Google Scholar 

  18. F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, Tuning the Schottky contacts at the graphene/WS2 interface by electric field. RSC Adv. 7, 29350–29356 (2017)

    Article  ADS  Google Scholar 

  19. N.R. Pradhan et al., Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett. 15(12), 8377–8384 (2015)

    Article  ADS  Google Scholar 

  20. B. Liu, M. Cai, Y. Zhao, L. Wu, L. Wang, First-principles investigation of the schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv. 6, 60271–60276 (2016)

    Article  ADS  Google Scholar 

  21. A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2)”, material chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)

    Article  Google Scholar 

  22. H.L. Zhuang, R.G. Hennig, Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting. Chem. Mater. 25, 3232 (2013)

    Article  Google Scholar 

  23. Y. Zhou, M. Zhao, Z.W. Chen, X.M. Shi, Q. Jiang, Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 20, 30290 (2018)

    Article  Google Scholar 

  24. V. Zólyomi, N.D. Drummond, V.I. Falko, Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations. Phys. Rev. B 89, 205416 (2014)

    Article  ADS  Google Scholar 

  25. H.R. Jappor, Electronic structure of novel GaS/GaSe heterostructures based on GaS and GaSe monolayers. Phys. B Condens. Matter. 524, 109–117 (2017)

    Article  ADS  Google Scholar 

  26. Y. Ma, Y. Dai, M. Guo, L. Yu, B. Huang, Tunable electronic and dielectric behaviour of GaS and GaSe monolayers. Phys. Chem. Chem. Phys. 15, 7098–7105 (2013)

    Article  Google Scholar 

  27. S.S. Abed, A. Abbas, M.K. Muhsin, H.R. Jappor, Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors. Chem. Phys. Lett. 713, 46–51 (2018)

    Article  ADS  Google Scholar 

  28. P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988–5994 (2012)

    Article  Google Scholar 

  29. F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zólyomi, N. Drummond, V.I. Fal’ko, K. Tanigaki, High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8, 752–760 (2014)

    Article  Google Scholar 

  30. S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.-C. Chou, Y.-T. Chen, X.P.A. Gao, Intrinsic electron mobility exceeding 103 cm2/(V s) in multilayer InSe FETs. Nano Lett. 15, 3815 (2015)

    Article  ADS  Google Scholar 

  31. D.J. Late, B. Liu, J. Luo, A. Yan, H.S.S.R. Matte, M. Grayson, C.N.R. Rao, V.P. Dravid, GaS and GaSe ultrathin layer transistors. Adv. Mater. 24, 3549 (2014)

    Article  Google Scholar 

  32. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang, L.-J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017)

    Article  Google Scholar 

  33. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, J. Lou, Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017)

    Article  Google Scholar 

  34. A. Kandemir, H. Sahin, Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum. Phys. Chem. Chem. Phys. 20, 17380–17386 (2018)

    Article  Google Scholar 

  35. M. Wang, Y. Pang, D.Y. Liu, S.H. Zheng, Q.L. Song, Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons. Comput. Mater. Sci. 146, 240–247 (2018)

    Article  Google Scholar 

  36. Y.F. Luo, Y. Pang, M. Tang, Q. Song, M. Wang, Electronic properties of Janus MoSSe nanotubes. Comput. Mater. Sci. 156, 315–320 (2019)

    Article  Google Scholar 

  37. T.V. Vu, V.T.T. Vi, C.V. Nguyen, H.V. Phuc, N.N. Hieu, Computational prediction of electronic and optical properties of Janus Ga2SeTe monolayer. J. Phys. D. 53, 124411 (2020)

    Article  Google Scholar 

  38. H.T.T. Nguyen, V.T.T. Vi, T.V. Vu, H.V. Phuc, C.V. Nguyen, H.D. Tong, L.T. Hoa, N.N. Hieu, Janus Ga2STe monolayer under strain and electric field: theoretical prediction of electronic and optical properties. Phys. E: Low-Dimens. Syst. Nanostruct. 124, 114358 (2020)

    Article  Google Scholar 

  39. H.T.T. Nguyen, T.V. Vu, C.V. Nguyen, H.V. Phuc, H.D. Tong, S.T. Nguyen, N.N. Hieu, Electronic and optical properties of Janus SnSSe monolayer: effects of strain and electric field. Phys. Chem. Chem. Phys. 22, 11637–11643 (2020)

    Article  Google Scholar 

  40. L.C. Nhan, C.Q. Nguyen, N.V. Hieu, H.V. Phuc, C.V. Nguyen, N.N. Hieu, T.V. Vu, H.T.T. Nguyen, Theoretical insights into tunable electronic and optical properties of Janus Al2SSe monolayer through strain and electric field. Optik 238, 166761 (2020)

    Article  ADS  Google Scholar 

  41. H.D. Bui, H.R. Jappor, N.N. Hieu, Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications. Superlattice. Microst. 125, 1–7 (2019)

    Article  ADS  Google Scholar 

  42. H.R. Jappor, M.M. Obeid, T.V. Vu, D.M. Hoat, H.D. Bui, N.N. Hieu, S.J. Edrees, Y. Mogulkoc, R. Khenata, Engineering the optical and electronic properties of Janus monolayer Ga2SSe by biaxial strain. Superlattice. Microst. 130, 545–553 (2019)

    Article  ADS  Google Scholar 

  43. T.N. Do, C.V. Nguyen, L.V. Tan, M. Idrees, B. Amin, N.V. Hieu, N.T.X. Hoai, L.T. Hoa, N.N. Hieu, H.V. Phuc, Effects of La and Ce doping on electronic structure and optical properties of janus MoSSe monolayer. Superlattices Microst. 151, 106841 (2021)

    Article  Google Scholar 

  44. Atomistix tool kit version 2017 synopsys quantumwise A/S www.quantumwise.com.

  45. Y. Pan, J. Zhang, Influence of noble metals on the electronic and optical properties of the monoclinic ZrO2: a first-principles study. Vacuum 187(1–6), 110112 (2021)

    Article  ADS  Google Scholar 

  46. J.N. Zhang, L. Ma, M. Zhang, J.M. Zhang, Effects of gas adsorption on electronic and optical properties of palladium-doped graphene: first-principles study. Phys. E: Low-Dimens. Syst. Nanostruct. 118(1–8), 113879 (2020)

    Article  ADS  Google Scholar 

  47. J. Zhang, G. Yang, J. Tian, Z. Wang, Y. Tang, D. Ma, Effect of atom adsorption on the electronic, magnetic, and optical properties of the GeP monolayer: A first principal study. Appl. Surf. Sci. 475, 863–872 (2019)

    Article  ADS  Google Scholar 

  48. M. Lasmia, S. Mahtouta, F. Rabilloudb, The effect of palladium and platinum doping on the structure, stability andoptical properties of germanium clusters: DFT study of PdGen and PtGen (n = 1–20) clusters. Comput. Theor. Chem. 1181(1–7), 112830 (2020)

    Article  Google Scholar 

  49. J.P. Perdew, K. Burke, M. Ernzerhof, generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  50. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996)

    Article  ADS  Google Scholar 

  51. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  52. H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D.B. Geohegan, K. Xiao, Synthesis, and emerging properties of 2D layered III–VI metal chalcogenides. Appl. Phys. Rev. 6(1–30), 041312 (2019)

    Article  ADS  Google Scholar 

  53. J.H. Han, M. Kwak, Y. Kim, J. Cheon, Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem. Rev. 118, 6151–6188 (2018)

    Article  Google Scholar 

  54. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang, L.-J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nano-technol. 12, 1–7 (2017)

    ADS  Google Scholar 

  55. P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, T. Zhai, Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 4, 1–27 (2018)

    Google Scholar 

  56. J. Shah, S.K. Gupta, Y. Sonvane, K. Adhikari, Computational study of electronic and optical properties of p-group atomic adsorption on α-Al2O3 (0001). Comput. Theor. Chem. 1155, 101–108 (2019)

    Article  Google Scholar 

  57. X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jjie, Surface charge transfer doping of low dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28, 1–34 (2016)

    ADS  Google Scholar 

  58. D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N.H. Patoary, H. Li, M.M. Petric, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A.V. Stier, K. Müller, S. Yang, I.S. Esqueda, H. Zhuang, J.J. Finley, S. Tongay, Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32(1–9), 2006320 (2020)

    Article  Google Scholar 

  59. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ Press, New York, 2014)

    Google Scholar 

  60. D.J. Griffithis, Introduction to Electrodynamics (Prentice-Hall, Upper Saddle River, 1999)

    Google Scholar 

  61. R. Li, Y. Cheng, W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14, 1802091 (2018)

    Article  Google Scholar 

  62. Y. Guo, S. Zhou, Y. Bai, J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 110, 163102 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS developed the theoretical formalism, performed the analytic calculations and the numerical simulations. SS wrote the manuscript with inputs from the Dr. SC and both authors contributed to the final version of the manuscript. Both authors discussed the results and commented on the manuscript. Dr. SC supervised the project.

Corresponding author

Correspondence to Sapna Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Choudhary, S. Enhancing the optical absorption of Ga2SeTe Janus monolayer by adsorption of transition metals. Eur. Phys. J. D 76, 15 (2022). https://doi.org/10.1140/epjd/s10053-022-00341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00341-6

Navigation