Skip to main content
Log in

Computing resonance energies directly: method comparison for a model potential

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In contrast to bound states, electronically metastable states or resonances still represent a major challenge for quantum chemistry and molecular physics. The reason lies in the embedding continuum: Bound states represent a many-body problem, while resonances represent a simultaneous scattering and many-body problem. Here we focus on so-called \(\mathcal{{L}}^2\)-methods, which treat the continuum only implicitly, but rather take the ‘decaying state’ perspective and emphasize electron correlation in the decaying state. These methods represent a natural extension of quantum chemistry into the metastable domain and are suitable for, say, modeling electron-induced reactions or resonant photo detachment. The three workhorse \(\mathcal{{L}}^2\)-methods are complex absorbing potentials, the stabilization method, and regularized analytic continuation. However, even for these three methods, making comparisons is less than straightforward as each method works best with a unique blend of electronic structure methods and basis sets. Here we address this issue by considering a model potential. For a model, we can establish a reliable reference resonance energy by using the complex scaling method and a discrete variable representation. Then, we can study the performance of the three workhorse methods as well as effects of more approximate Gaussian basis sets.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

“This manuscript has data included as electronic supplementary material”.

References

  1. V.I. Kukulin, V.M. Krasnopolsky, J. Horáček, Theory of resonances (Kluwer Acedmic Publishers, Dordrecht, The Netherlands, 1989), pp. 88–133

    Book  Google Scholar 

  2. K.D. Jordan, V.K. Voora, J. Simons, Negative electron affinities from conventional electronic structure methods. Theor. Chem. Acc. 133, 1445–1 (2014)

    Article  Google Scholar 

  3. J.M. Herbert, The quantum chemistry of loosely-bound electrons, in Reviews in Computational Chemistry, Vol. 28, edited by A. L. Parrill and K. B. Lipkowitz (Wiley, Hoboken, NJ, USA, 2015) pp. 391–517

  4. T.-C. Jagau, K.B. Bravaya, A.I. Krylov, Extending quantum chemistry of bound states to electronic resonances. Annu. Rev. Phys. Chem. 68, 525 (2017)

    Article  ADS  Google Scholar 

  5. A.J.F. Siegert, Phys. Rev. 56, 750 (1939)

    Article  ADS  Google Scholar 

  6. J.D. Gorfinkiel, S. Ptasinska, Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B 50, 182001–1 (2017)

    Article  ADS  Google Scholar 

  7. J.U. Davis Jr., Q.M. Phung, T. Yanai, M. Ehara, T. Sommerfeld, Lifetimes of be\(_3^{2-}\) and mg\(_3^{2-}\) cluster dianions. J. Phys. Chem. A 125, 3579–3588 (2021)

    Article  Google Scholar 

  8. P. Kolorenč, V. Averbukh, Fano-adc(2,2) method for electronic decay rates. J. Chem. Phys. 152, 214107 (2020)

    Article  ADS  Google Scholar 

  9. A. Ghosh, N. Vaval, Geometry-dependent lifetime of interatomic coulombic decay using equation-of-motion coupled cluster method. J. Chem. Phys. 141, 234108–1 (2014)

    Article  ADS  Google Scholar 

  10. P. Hoerner, W. Li, H.B. Schlegel, Angular dependence of strong field ionization of 2-phenylethyl-n, n-dimethylamine (penna) using time-dependent configuration interaction with an absorbing potential. J. Phys. Chem. A 124, 4777 (2020)

    Article  Google Scholar 

  11. C.W. McCurdy, T.N. Rescigno, B.I. Schneider, Interrelation between variational principles for scattering amplitudes and generalized R-matrix method. Phys. Rev. A 36, 2061 (1987)

    Article  ADS  Google Scholar 

  12. C. Winstead, V. McKoy, A.A. Noyes, Electron scattering by small molecules. Adv. Chem. Phys. 96, 103 (1996)

    Google Scholar 

  13. P.G. Burke, In Many-body Atomic Physics, edited by M. Baer and G. D. Billing (Cambridge University Press, NewYork, 1998) pp. 376–401, pp. 305–324

  14. U.V. Riss, H.-D. Meyer, Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B 26, 4503 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.U. Hazi, H.S. Taylor, Stabilization method of calculating resonance energies: Model problem. Phys. Rev. A 1, 1109 (1970)

    Article  ADS  Google Scholar 

  16. J.S.-Y. Chao, M.F. Falcetta, K.D. Jordan, Application of the stabilization method to the N\(_2^-(1 {}^2{\Pi }_g)\) and Mg\(^-(1 {}^2{P})\) temporary anion states. J. Chem. Phys. 93, 1125 (1990)

    Article  ADS  Google Scholar 

  17. A. Landau, I. Haritan, P.R. Kaprálová-Ždánská, N. Moiseyev, Atomic and molecular complex resonances from real eigenvalues using standard (hermitian) electronic structure calculations. J. Phys. Chem. A 120, 3098 (2016)

    Article  Google Scholar 

  18. J. Horáček, I. Paidarová, R. Čurík, On a simple way to calculate electronic resonances for polyatomic molecules. J. Chem. Phys. 143, 184102–1 (2015)

    Article  ADS  Google Scholar 

  19. T. Bárta, J. Horáček, Calculation of resonances by analytical continuation: role of asymptotic behavior of coupling function. Phys. Scr. 95, 065401 (2020)

    Article  ADS  Google Scholar 

  20. W. Domcke, Theory of resonance and threshold effects in electron-molecule collisions: The projection-operator approach. Phys. Rep. 208, 97 (1991)

    Article  ADS  Google Scholar 

  21. H. Morgner, The validity of the local approximation in Penning ionisation as studied by model calculations. Chem. Phys. 145, 239 (1990)

    Article  Google Scholar 

  22. Q.M. Phung, Y. Komori, T. Yanai, T. Sommerfeld, M. Ehara, Combination of a voronoi-type complex absorbing potential with the xms-caspt2 method and pilot applications. J. Chem. Theory Comput. 16, 2606 (2020)

    Article  Google Scholar 

  23. T. Sommerfeld, M. Ehara, Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods. J. Chem. Phys. 142, 034105 (2015)

    Article  ADS  Google Scholar 

  24. M. Thodika, M. Fennimore, T.N.V. Karsili, S. Matsika, Comparative study of methodologies for calculating metastable states of small to medium-sized molecules. J. Chem. Phys. 151, 244104 (2019)

    Article  ADS  Google Scholar 

  25. W.P. Reinhardt, Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223 (1982)

    Article  ADS  Google Scholar 

  26. N. Moiseyev, Non-hermitian quantum mechanics (Cambridge University Press, Cambridge, UK, 2011)

    Book  MATH  Google Scholar 

  27. J.C. Light, Discrete variable representation in quantum dynamics. In Time–Dependent Quantum Molecular Dynamics, edited by J. Broeckhove and L. Lathouwers (Plenum Press, New York, 1992) pp. 185–199

  28. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  29. G. Jolicard, E.J. Austin, Optical potential stabilisation method for predicting resonance levels. Chem. Phys. Lett. 121, 106 (1985)

    Article  ADS  Google Scholar 

  30. R. Santra, L.S. Cederbaum, Non-Hermitian electronic theory and application to clusters. Phys. Rep. 368, 1 (2002)

    Article  ADS  Google Scholar 

  31. U.V. Riss, H.-D. Meyer, Investigation on the reflection and transmission properties of complex absorbing potentials. J. Chem. Phys. 105, 1409 (1996)

    Article  ADS  Google Scholar 

  32. T.-C. Jagau, D. Zuev, K.B. Bravaya, E. Epifanovsky, A.I. Krylov, A fresh look a resonances and complex absorbing potentials: density matrix-based approach. J. Phys. Chem. Lett. 5, 310 (2014)

    Article  Google Scholar 

  33. C.H. Maier, L.S. Cederbaum, W. Domcke, A spherical-box approach to resonances. J. Phys. B 70, L119 (1980)

    Article  Google Scholar 

  34. J. Simons, J. Chem. Phys. 75, 2465 (1981)

    Article  ADS  Google Scholar 

  35. P.-O. Löwdin, Approximate calculation of lifetimes of resonance states in the continuum from real stabilisation graphs. Int. J. Quant. Chem. 27, 495 (1985)

    Article  Google Scholar 

  36. M.F. Falcetta, L.A. DiFalco, D.S. Ackerman, J.C. Barlow, K.D. Jordan, Assessment of various electronic structure methods for characterizing temporary anion states: Application to the ground state anions of n\(_2\), c\(_2\)h\(_2\), c\(_2\)h\(_4\), and c\(_6\)h\(_6\). J. Phys. Chem. A 118, 7489 (2014)

    Article  Google Scholar 

  37. K.D. Jordan, Private communications (2021)

  38. B.J. Carlson, M.F. Falcetta, S.R. Slimak, K.D. Jordan, A fresh look at the role of the coupling of a discrete state with a pseudocontinuum state in the stabilization method for characterizing metastable states. J. Chem. Phys. Lett. 12, 1202 (2021)

    Article  Google Scholar 

  39. A. Landau, I. Haritan, The clusterization technique: A systematic search for the resonance energies obtained via padé. J. Phys. Chem. A 123, 5091 (2019)

  40. J. Horáček, P. Mach, J. Urban, Calculation of s-matrix poles by means of accc: 2-pi-g of n2-. Phys. Rev. A 82, 032713 (2010)

  41. J. Horáček, I. Paidarová, R. Čurík, Determination of the resonance energy and width of the \(^2\)b\(_{2g}\) shape resonance of ethylene with the method of analytic continuation of the coupling constant. J. Phys. Chem. A 118, 6536 (2014)

    Article  Google Scholar 

  42. V.I. Kukulin, V.M. Krasnopolsky, J. Horáček, Theory of resonances (Kluwer Acedmic Publishers, Dordrecht, The Netherlands, 1989)

  43. W. Domcke, Analytic theory of resonances and bound states near coulomb thresholds. J. Phys. B 16, 359 (1983)

    Article  ADS  Google Scholar 

  44. R. Čurík, I. Paidarová, J. Horáček, The 2\(\pi \)g shape resonance of acetylene anion: an investigation with the rac method. Eur. Phys. J. D 70, 146 (2016)

  45. P. Nag, R. Čurík, M. Tarana, M. Polášek, M. Ehara, T. Sommerfeld, J. Fedor, Resonance states in cyanogen nccn. Phys. Chem. Chem. Phys. 22, 23141 (2020)

    Article  Google Scholar 

  46. A.F. White, M. Head-Gordon, C.W. McCurdy, Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules. J. Chem. Phys. 146, 044112 (2017)

    Article  ADS  Google Scholar 

  47. T. Sommerfeld, J.B. Melugin, P. Hamal, M. Ehara, Resonance energies and lifetimes from the analytic continuation of the coupling constant method: Robust algorithms and a critical analysis. J. Chem. Theory Comput. 13, 2550 (2017)

    Article  Google Scholar 

  48. R. Čurík, I. Paidarová, J. Horáček, Shape resonances of be\(^-\) and mg\(^-\) investigated with the method of analytic continuation. Phys. Rev. A 97, 052704 (2018)

    Article  ADS  Google Scholar 

  49. T. Sommerfeld, U.V. Riss, H.-D. Meyer, L.S. Cederbaum, B. Engels, H.U. Suter, Temporary anions - calculation of energy and lifetime by absorbing potentials: The N\(_2^-\)\({}^2\Pi _g\) resonance. J. Phys. B 31, 4107 (1998)

    Article  ADS  Google Scholar 

  50. D. Zuev, T.-C. Jagau, K.B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordan, A.I. Krylov, Caps within the eom-cc family of methods: Theory implementaion and benchmarks. J. Chem. Phys. 141, 024102–1 (2014)

    Article  ADS  Google Scholar 

  51. T. Sommerfeld, M. Ehara, Complex absorbing potentials with voronoi isosurfaces wrapping perfectly around molecules. J. Chem. Theory Comput. 11, 4627 (2015)

    Article  Google Scholar 

  52. Z. Benda, K. Rickmeyer, T.C. Jagau, Structure optimization of temporary anions. J. Chem. Theory Comput. 14, 3468 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Support from the National Science Foundation under Grant No. 1856775 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Thomas Sommerfeld.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 174 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, J.U., Sommerfeld, T. Computing resonance energies directly: method comparison for a model potential. Eur. Phys. J. D 75, 316 (2021). https://doi.org/10.1140/epjd/s10053-021-00332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00332-z

Navigation