Skip to main content
Log in

s-Wave resonance in exponential cosine screened Coulomb potential

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The s-wave resonance in the exponential cosine screened Coulomb potential is investigated by employing the uniform complex-scaling generalized pseudospectral method. It is found that beyond the well-known critical screening parameter \(\lambda _{\mathrm{c}} = 0.720524\) where the ground state merges into the continuum, there exists a huge gap for the screening parameter before the ground state transforms into a well-defined shape resonance lying above the autoionization threshold. The critical value for the emergence of such a shape resonance is determined at about \(\lambda _{\mathrm{r}}^{+} = 0.90035\). The behavior of the system in the gap \(\lambda _{\mathrm{c}}< \lambda < \lambda _{\mathrm{r}}^{+}\) is still a mystery, and it is conjectured that the bound state would probably transform into negative-energy virtual states and below-threshold shape resonances. For screening parameters larger than \(\lambda _{\mathrm{r}}^{+}\), the resonance positions and widths are calculated with high precision and the results are comparable to previous predictions available in the literature. The trajectories of the poles of S-matrix in both the complex energy and momentum planes are obtained.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are included in the paper.]

References

  1. E.C. McIrvine, J. Phys. Soc. Jpn. 15, 928 (1960)

    Article  ADS  Google Scholar 

  2. G.L. Hall, J. Phys. Chem. Solids 23, 1147 (1962)

    Article  ADS  Google Scholar 

  3. C.S. Lam, Y.P. Varshni, Phys. Rev. A 6, 1391 (1972)

    Article  ADS  Google Scholar 

  4. C.S. Lai, Phys. Rev. A 26, 2245 (1982)

    Article  ADS  Google Scholar 

  5. R. Sever, C. Tezcan, Phys. Rev. A 35, 2725 (1987)

    Article  ADS  Google Scholar 

  6. P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)

    Article  ADS  Google Scholar 

  7. P.K. Shukla, B. Eliasson, Plasma Phys. Control Fusion 52, 124040 (2010)

    Article  ADS  Google Scholar 

  8. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  9. P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012)

    Article  ADS  Google Scholar 

  10. A. Ghoshal, Y.K. Ho, Phys. Rev. A 79, 062514 (2009)

    Article  ADS  Google Scholar 

  11. A.K. Roy, Int. J. Quantum Chem. 113, 1503 (2013)

    Article  Google Scholar 

  12. L.U. Ancarani, K.V. Rodriguez, Phys. Rev. A 89, 012507 (2014)

    Article  ADS  Google Scholar 

  13. R.K. Janev, S.B. Zhang, J.G. Wang, Matter Radiat. Extremes 1, 237 (2016)

  14. S.K. Chaudhuri, P.K. Mukherjee, R.K. Chaudhuri, S. Chattopadhyay, Phys. Plasmas 25, 042705 (2018)

    Article  ADS  Google Scholar 

  15. X.-W. Wang, S.-W. Chen, J.-Y. Guo, J. Phys. B At. Mol. Opt. Phys. 52, 025001 (2019)

    Article  ADS  Google Scholar 

  16. J.Y. Wu, Y.Y. Qi, Y.J. Cheng, Y. Wu, J.G. Wang, R.K. Janev, S.B. Zhang, Phys. Plasmas 27, 043301 (2020)

    Article  ADS  Google Scholar 

  17. X. Wang, Z. Jiang, S. Kar, Y.K. Ho, At. Data Nucl. Data Tables 143, 101466 (2021)

  18. Y.Z. Zhang, L.G. Jiao, F. Liu, A. Liu, Y.K. Ho, At. Data Nucl. Data Tables 140, 101420 (2021)

    Article  Google Scholar 

  19. P. Debye, E. Hückel, Z. Phys. 24, 185 (1923)

    Google Scholar 

  20. L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942)

    MathSciNet  Google Scholar 

  21. L.G. Jiao, H.H. Xie, A. Liu, H.E. Montgomery Jr., Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 54, 175002 (2021)

    Article  ADS  Google Scholar 

  22. D. Singh, Y.P. Varshni, Phys. Rev. A 28, 2606 (1983)

    Article  ADS  Google Scholar 

  23. I. Nasser, M.S. Abdelmonem, A. Abdel-Hady, Phys. Scr. 84, 045001 (2011)

    Article  ADS  Google Scholar 

  24. H. Bahlouli, M.S. Abdelmonem, S.M. Al-Marzoug, Chem. Phys. 393, 153 (2012)

    Article  Google Scholar 

  25. G. Yao, S.-I. Chu, Chem. Phys. Lett. 204, 381 (1993)

    Article  ADS  Google Scholar 

  26. L. Zhu, Y.Y. He, L.G. Jiao, Y.C. Wang, Y.K. Ho, Int. J. Quantum Chem. 120, e26245 (2020)

    Google Scholar 

  27. Y.K. Ho, Phys. Rep. 99, 1 (1983)

    Article  ADS  Google Scholar 

  28. X.-M. Tong, S.-I. Chu, Chem. Phys. 217, 119 (1997)

    Article  Google Scholar 

  29. D.A. Telnov, S.-I. Chu, Phys. Rev. A 59, 2864 (1999)

    Article  ADS  Google Scholar 

  30. S.-I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. H.H. Xie, L.G. Jiao, A. Liu, Y.K. Ho, Int. J. Quantum Chem. 121, e26653 (2021)

    Article  Google Scholar 

  32. L. Zhu, Y.Y. He, L.G. Jiao, Y.C. Wang, Y.K. Ho, Phys. Plasmas 27, 072101 (2020)

    Article  ADS  Google Scholar 

  33. L.G. Jiao, Y.Y. He, Y.Z. Zhang, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 54, 065005 (2021)

    Article  ADS  Google Scholar 

  34. Y.Y. He, L.G. Jiao, A. Liu, Y.Z. Zhang, Y.K. Ho, Eur. Phys. J. D 75, 126 (2021)

    Article  ADS  Google Scholar 

  35. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, New York, 2011)

    Book  MATH  Google Scholar 

  36. M. Klaus, B. Simon, Ann. Phys. 130, 251 (1980)

    Article  ADS  Google Scholar 

  37. H. Hogreve, Phys. Lett. A 201, 111 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Cuestas, P. Serra, J. Phys. B At. Mol. Opt. Phys. 46, 115001 (2013)

    Article  ADS  Google Scholar 

  39. J.Y. Wu, Y. Wu, Y.Y. Qi, J.G. Wang, R.K. Janev, S.B. Zhang, Phys. Rev. A 99, 012705 (2019)

    Article  ADS  Google Scholar 

  40. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover Publications, New York, 2006)

    Google Scholar 

  41. U. Fano, J.W. Cooper, Phys. Rev. 137, A1364 (1965)

    Article  ADS  Google Scholar 

  42. S.B. Zhang, X.T. Xie, J.G. Wang, Phys. Rev. A 96, 053420 (2017)

    Article  ADS  Google Scholar 

  43. Y.K. Yang, Y. Cheng, Y. Wu, Y.Z. Qu, J.G. Wang, S.B. Zhang, New J. Phys. 22, 123022 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.D. Alhaidari, H. Bahlouli, M.S. Abdelmonem, J. Phys. A Math. Theor. 41, 032001 (2008)

    Article  ADS  Google Scholar 

  45. A. Ghoshal, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 42, 075002 (2009)

    Article  ADS  Google Scholar 

  46. A. Ghoshal, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 42, 175006 (2009)

    Article  ADS  Google Scholar 

  47. L.G. Jiao, Y.K. Ho, Comput. Phys. Commun. 188, 140 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. L.G. Jiao, L.R. Zan, L. Zhu, Y.Z. Zhang, Y.K. Ho, Phys. Rev. A 100, 022509 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. H. Hogreve for helpful discussions on the one-dimensional model potential and the two anonymous reviewers for their valuable comments and suggestions. Financial support from the National Natural Science Foundation of China (Grant Nos. 12174147, 11774131, and 91850114) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript and have read and approved the final version. LGJ and AL initiated the project and wrote the manuscript. XHJ and ZXH ran the program and generated the data. HEM and YKH carried out the analysis of results and significantly improved the manuscript.

Corresponding author

Correspondence to Li Guang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L.G., Ji, X.H., Hu, Z.X. et al. s-Wave resonance in exponential cosine screened Coulomb potential. Eur. Phys. J. D 75, 313 (2021). https://doi.org/10.1140/epjd/s10053-021-00330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00330-1

Navigation