Skip to main content
Log in

Tunable Goos H\(\ddot{a}\)nchen shift at an isotropic fractal dielectric and uniaxial chiral interface

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article, the reflection properties of the plane wave incident at isotropic fractal dielectric-anisotropic chiral interface have been demonstrated. The properties of the reflected wave have been discussed explicitly as a function of field parameter \(\Omega =\left\{ \theta _i,\underline{\underline{\varepsilon }},\kappa ,\zeta \right\} \). The Goos H\(\ddot{a}\)nchen Shift in the reflected wave from the said interface has also been predicted based on the stationary phase method. Furthermore, for the sake of tuning the Goos H\(\ddot{a}\)nchen Shift, the impact of field parameter \(\Omega \) has also been scrutinized and agreement with the results already presented in literature has been obtained..

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and there is no experimental data available.]

References

  1. F. Goos, H. Hänchen, Ein neuer und fundamentaler versuch zur totalreflexion. Annalen der Physik 436(7–8), 333–346 (1947)

    Article  ADS  Google Scholar 

  2. K. Artmann, Berechnung der seitenversetzung des totalreflektierten strahles. Annalen der Physik 437(1–2), 87–102 (1948)

  3. A. Farmani, M. Miri, M.H. Sheikhi, Tunable resonant goos-hänchen and imbert-fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B 34(6), 1097–1106 (2017)

    Article  ADS  Google Scholar 

  4. P. Gruszecki, M. Mailyan, O. Gorobets, M. Krawczyk, Goos-hänchen shift of a spin-wave beam transmitted through anisotropic interface between two ferromagnets. Phys. Rev. B 95(1), 014421 (2017)

    Article  ADS  Google Scholar 

  5. W.I. Waseer, R. Parveen, Q.A. Naqvi, M.J. Mughal, Observing the goos-hänchen shift for a planar interface of dielectric and orthorhombic anisotropic medium. JOSA B 37(8), 2366–2371 (2020)

    Article  ADS  Google Scholar 

  6. L.-G. Wang, H. Chen, S.-Y. Zhu, Large negative goos-hänchen shift from a weakly absorbing dielectric slab. Opt. Lett. 30(21), 2936–2938 (2005)

    Article  ADS  Google Scholar 

  7. R. Parveen, Q.A. Naqvi, Study of lateral shift in the presence of lossy dispersive dielectric-magnetic uniaxial left handed structure using lorentz-drude medium model. Optik 224, 165676 (2020)

    Article  ADS  Google Scholar 

  8. M. Q. Mehmood, J. Rho, and M. Zubair, Electromagnetic wave manipulation with metamaterials and metasurfaces for future communication technologies. Backscattering and RF Sensing for Future Wireless Communication, (2021)

  9. J. Götte, A. Aiello, J. Woerdman, Loss-induced transition of the goos-hänchen effect for metals and dielectrics. Opt. Expr. 16(6), 3961–3969 (2008)

    Article  ADS  Google Scholar 

  10. B. Zhao, L. Gao, Temperature-dependent goos-hänchen shift on the interface of metal/dielectric composites. Opt. Expr. 17(24), 21433–21441 (2009)

    Article  ADS  Google Scholar 

  11. P. Hou, Y. Chen, X. Chen, J. Shi, Q. Wang, Giant bistable shifts for one-dimensional nonlinear photonic crystals. Phys. Rev. A 75(4), 045802 (2007)

    Article  ADS  Google Scholar 

  12. L.-G. Wang, S.-Y. Zhu, Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals. Opt. Lett. 31(1), 101–103 (2006)

    Article  ADS  Google Scholar 

  13. A. Farmani, A. Mir, Z. Sharifpour, Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    Article  ADS  Google Scholar 

  14. S. Farhadi, A. Farmani, A. Hamidi, Figure of merit enhancement of surface plasmon resonance biosensor based on talbot effect. Opt. Quantum Electron. 53(9), 1–13 (2021)

    Article  Google Scholar 

  15. T. Tamir, H. Bertoni, Lateral displacement of optical beams at multilayered and periodic structures. JOSA 61(10), 1397–1413 (1971)

    Article  ADS  Google Scholar 

  16. Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, Giant and controllable goos-hänchen shifts based on surface plasmon resonance with graphene-mos 2 heterostructure. Opt. Mater. Expr. 8(10), 3036–3048 (2018)

    Article  ADS  Google Scholar 

  17. V.J. Yallapragada, A.P. Ravishankar, G.L. Mulay, G.S. Agarwal, V.G. Achanta, Observation of giant goos-hänchen and angular shifts at designed metasurfaces. Scientif. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  18. P. Yari, H. Farmani, A. Farmani, Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits. Plasmonics, pp. 1–10, (2021)

  19. H. Sattari, S. Ebadollahi-Bakhtevar, M. Sahrai, Proposal for a 1\(\times \) 3 goos-hänchen shift-assisted de/multiplexer based on a multilayer structure containing quantum dots. J. Appl. Phys. 120(13), 133102 (2016)

    Article  ADS  Google Scholar 

  20. A. Farmani, Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2), 401–407 (2019)

    Article  ADS  Google Scholar 

  21. A. Farmani, A. Mir, Nanosensors for street-lighting system. in Nanosensors for Smart Cities, pp. 209–225, Elsevier, (2020)

  22. H. Farmani, A. Farmani, Z. Biglari, A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E: Low-dimens. Syst. Nanostruct. 116, 113730 (2020)

    Article  Google Scholar 

  23. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect. Opt. Expr. 21(11), 13380–13385 (2013)

    Article  ADS  Google Scholar 

  24. Y.S. Dadoenkova, F.F. Bentivegna, V.V. Svetukhin, A.V. Zhukov, R.V. Petrov, M.I. Bichurin, Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing. Appl. Phys. B 123(4), 107 (2017)

    Article  ADS  Google Scholar 

  25. D. Xu, S. He, J. Zhou, S. Chen, S. Wen, H. Luo, Goos-hänchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett. 116(21), 211103 (2020)

    Article  ADS  Google Scholar 

  26. T. Stenmark, R.C. Word, R. Könenkamp, Determination of the goos-hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum. Opt. Expr. 24(4), 3839–3848 (2016)

    Article  ADS  Google Scholar 

  27. M. Merano, N. Hermosa, J. Woerdman, A. Aiello, How orbital angular momentum affects beam shifts in optical reflection. Phys. Rev. A 82(2), 023817 (2010)

    Article  ADS  Google Scholar 

  28. A. Lakhtakia, On planewave remittances and goos-hänchen shifts of planar slabs with negative real permittivity and permeability. Electromagnetics 23(1), 71–75 (2003)

    Article  Google Scholar 

  29. J.-F. Dong, X.-Y. Luo, J. Li, Reflection and transmission of electromagnetic waves on the interface of uniaxial chiral media. Optoelectron. Lett. 9(2), 148–152 (2013)

    Article  ADS  Google Scholar 

  30. A. Razaque, Q. Minhas, Q. A. Naqvi, W. I. Waseer, Analysis of the goos-hänchen shift for a planar dielectric-chiral interface excited by fractional dual fields. Optik, p. 164659, (2020)

  31. Y. Huang, W. Dong, L. Gao, C. Qiu, Large positive and negative lateral shifts near pseudo-brewster dip on reflection from a chiral metamaterial slab. Opt. Expr. 19(2), 1310–1323 (2011)

    Article  ADS  Google Scholar 

  32. Y. Huang, B. Zhao, L. Gao, Goos-hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites. JOSA A 29(7), 1436–1444 (2012)

    Article  ADS  Google Scholar 

  33. W. Yu, H. Sun, L. Gao, Magnetic control of goos-hänchen shifts in a yttrium-iron-garnet film. Scientif. Rep. 7, 45866 (2017)

    Article  ADS  Google Scholar 

  34. B. Drobot, A. Melnyk, M. Zhang, T. Allen, R. DeCorby, Visible-band dispersion by a tapered air-core bragg waveguide. Opt. Expr. 20(21), 23906–23911 (2012)

    Article  ADS  Google Scholar 

  35. P. Lohia, Y. Prajapati, J. Saini, B. Rai, Effect of chirality on dispersion characteristics of uniaxial anisotropic chiral elliptical waveguide. J. Opt. Commun. 37(4), 337–343 (2016)

    Article  Google Scholar 

  36. M. Faryad, Surface plasmon-polariton waves guided by reciprocal, uniaxially chiral, bianisotropic material. in Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII. vol. 11082, p. 110821P, International Society for Optics and Photonics, (2019)

  37. M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic fields and waves in fractional dimensional space (Springer Science & Business Media, New York, 2012)

    Book  MATH  Google Scholar 

  38. B.B. Mandelbrot, B.B. Mandelbrot, The fractal geometry of nature (WH freeman, New York, 1982)

    MATH  Google Scholar 

  39. D. Baleanu, Z.B. Güvenç, J.T. Machado et al., New trends in nanotechnology and fractional calculus applications (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  40. O.S. Iyiola, E.R. Nwaeze, Some new results on the new conformable fractional calculus with application using d’alambert approach. Progr. Fract. Differ. Appl 2(2), 115–122 (2016)

    Article  Google Scholar 

  41. S. Ahmad, M. Zubair, O. Jalil, U. Younis, A difference method with semi-analytical approach for achieving accuracy in optical gaps of 2d materials using exciton model in fractional space. Japan. J. Appl. Phys. 60(6), 060905 (2021)

    Article  Google Scholar 

  42. A. Ehsan, M.Q. Mehmood, K. Riaz, Y.S. Ang, M. Zubair, Unraveling the vector nature of generalized space-fractional bessel beams. Phys. Rev. A 104(2), 023512 (2021)

  43. M. Zubair, M.J. Mughal, Q. Naqvi, The wave equation and general plane wave solutions in fractional space. Progr. Electromagnet. Res. Lett. 19, 137–146 (2010)

    Article  Google Scholar 

  44. Q.A. Naqvi, M.A. Fiaz, Electromagnetic behavior of a planar interface of non-integer dimensional spaces. J. Electromag. Waves Appl. 31(16), 1625–1637 (2017)

    Article  Google Scholar 

  45. S. Kanwal, Q.A. Naqvi, Exploring the electromagnetic characteristics of a planar interface of two non-integer dimensional chiral mediums. Optik 187, 164–171 (2019)

    Article  ADS  Google Scholar 

  46. H. Asad, M. Zubair, M.J. Mughal, Reflection and transmission at dielectric-fractal interface. Progr. Electromag. Res. 125, 543–558 (2012)

    Article  Google Scholar 

  47. N. Bhatti, Q.A. Naqvi, M.A. Fiaz, Analysis of reflection and transmission from a nid-interface/nid-dielectric interface in the presence of losses. Optik 168, 873–883 (2018)

    Article  ADS  Google Scholar 

  48. W. I. Waseer, Q. A. Naqvi, M. J. Mughal, Analysis of the goos hanchen shift for a planar interface of nid dielectric and general medium. Optik, p. 165140, (2020)

  49. I.Z.U. Haq, A.A. Syed, Q.A. Naqvi, Observing the goos-hänchen shift in non-integer dimensional medium. Optik 206, 164071 (2020)

    Article  ADS  Google Scholar 

  50. Y. Huang, Z. Yu, C. Zhong, J. Fang, Z. Dong, Tunable lateral shifts of the reflected wave on the surface of an anisotropic chiral metamaterial. Opt. Mater. Expr. 7(5), 1473–1485 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank every anonymous person who contribute indirectly in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially and equally to this work.

Corresponding author

Correspondence to Rashda Parveen.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, R., Waseer, W.I. & Naqvi, Q.A. Tunable Goos H\(\ddot{a}\)nchen shift at an isotropic fractal dielectric and uniaxial chiral interface. Eur. Phys. J. D 76, 1 (2022). https://doi.org/10.1140/epjd/s10053-021-00329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00329-8

Navigation