Skip to main content
Log in

Quantum state-resolved dynamical study for the S+ + HD(v0 = 2, j0 = 0) → SD+/SH+ + H/D reaction

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dynamics studies of the S+ + HD(v0 = 2, j0 = 0) → SD+/SH+ + H/D reaction have been carried out using time-dependent wave packet method based on the potential energy surface reported by Zhu et al. (Phys Chem Chem Phys 23:4757, 2021) in the collision energy that range up to 2.0 eV. Some dynamics properties are reported at state-to-state level of theory such as integral cross section, rovibrational state distribution of product and so on. The results indicated that the S+ + HD(v0 = 2, j0 = 0) → SD+ + H is the main reaction channel, which is consistent with previous theory and experiment studies. The differential cross section shows that the stripping mechanism dominates the SH+ + D channel due to the high J value. The backward scattering signals of the SD+ + H channel are mainly contributed by the first vibrational excited state of product.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: If readers want the calculated data, they can contact the corresponding author, and we will share the calculated data.]

References

  1. W.W. Duley, D.A. Williams, Interstellar Chemistry (Academic Press, New York, 1984)

    Google Scholar 

  2. P. Armentrout, Int. J. Mass Spectrom. 200, 21933 (2000)

    Article  Google Scholar 

  3. C.Y. Ng, J. Phys. Chem. A 106, 5953 (2002)

    Article  Google Scholar 

  4. M. Horani, S. Leach, J. Rostas, C.R. Acad, Science (Paris) 22, 2196 (1959)

    Google Scholar 

  5. J. Delwiche, P. Natalis, Chem. Phys. Lett. 5, 564 (1970)

    Article  ADS  Google Scholar 

  6. G.F. Stowe, R.H. Schultz, C.A. Wight, P. Armentrout, Int. J. Mass Spectrom. Ion Phys. 100, 177 (1990)

    Article  ADS  Google Scholar 

  7. A.O. Benz, S. Bruderer, E.F. van Dishoeck, P. Stuber et al., Astron. Astrophys. 521, L35 (2010)

    Article  ADS  Google Scholar 

  8. B. Godard, E. Falgarone, M. Gerin et al., Astron. Astrophys. 540, A87 (2012)

    Article  Google Scholar 

  9. A. Zanchet, M. Agúndez, V.J. Herrero, A. Aguado, O. Roncero, Astrophys. J. 146, 125 (2013)

    Google Scholar 

  10. A. Aguado, M. Paniagua, J. Chem. Phys. 96, 1265 (1992)

    Article  ADS  Google Scholar 

  11. A. Aguado, C. Suarez, M. Paniagua, J. Chem. Phys. 98, 308 (1993)

    Article  ADS  Google Scholar 

  12. A. Aguado, C. Tablero, M. Paniagua, Comput. Phys. Commun. 108, 259 (1998)

    Article  ADS  Google Scholar 

  13. A. Zanchet, O. Roncero, N. Bulut, Phys. Chem. Chem. Phys. 18, 11391 (2016)

    Article  Google Scholar 

  14. Y. Song, Y. Zhang, S. Gao, Q. Meng, C. Wang, M.Y. Ballester, Mol. Phys. 116, 129 (2018)

    Article  ADS  Google Scholar 

  15. A. Zanchet, F. Lique, O. Roncero, J.R. Goicoechea, N. Bulut, Astron. Astrophys. 626, A103 (2019)

    Article  ADS  Google Scholar 

  16. F. Lique, A. Zanchet, N. Bulut, J.R. Goicoechea, O. Roncero, Astron. Astrophys. 638, A72 (2020)

    Article  ADS  Google Scholar 

  17. Z. Zhu, A. Zhang, D. He, W. Li, Phys. Chem. Chem. Phys. 23, 4757 (2021)

    Article  Google Scholar 

  18. Z.G. Sun, D.Q. Yu, W.B. Xie, J.Y. Hou, R. Dawes, H. Guo, J. Chem. Phys. 142, 174312 (2015)

    Article  ADS  Google Scholar 

  19. W.T. Li, A.J. Zhang, Z.L. Zhu, Eur. Phys. J. D 75, 73 (2021)

    Article  ADS  Google Scholar 

  20. B.N. Fu, D.H. Zhang, J. Chem. Phys. 138, 184308 (2013)

    Article  ADS  Google Scholar 

  21. M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.A. Fleck Jr., J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)

    Article  ADS  Google Scholar 

  23. J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)

    Article  ADS  Google Scholar 

  24. S. Gómez-Carrasco, O. Roncero, J. Chem. Phys. 125, 054102 (2006)

    Article  ADS  Google Scholar 

  25. Z. Sun, X. Lin, S.-Y. Lee, D.H. Zhang, J. Phys. Chem. A 113, 4145 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education (Grant Number: JJKH20200482KJ).

Author information

Authors and Affiliations

Authors

Contributions

JB wrote the manuscript and performed the dynamical calculations; F-YY drew the pictures and tables in the article; YZs gave some advices for the reaction mechanism of the two channels.

Corresponding author

Correspondence to Jing Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Yuan, F. & Zhang, Y. Quantum state-resolved dynamical study for the S+ + HD(v0 = 2, j0 = 0) → SD+/SH+ + H/D reaction. Eur. Phys. J. D 76, 10 (2022). https://doi.org/10.1140/epjd/s10053-021-00325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00325-y

Navigation