Skip to main content
Log in

Photon antibunching in a cavity-QED system with two Rydberg–Rydberg interaction atoms

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose how to achieve strong photon antibunching effect in a cavity-QED system coupled with two Rydberg–Rydberg interaction atoms. Via calculating the equal time second-order correlation function \(g^{(2)}(0)\), we find that the unconventional photon blockade and the conventional photon blockade appear in the atom-driven scheme, and they are both significantly affected by the Rydberg–Rydberg interaction. We also find that under appropriate parameters, one obtains the extremely strong photon antibunching by combining the conventional photon blockade and the unconventional photon blockade, and the mean photon number in the cavity can be improved significantly. In the cavity-driven scheme, the existence of the Rydberg–Rydberg interaction severely destroys the photon antibunching under the unconventional photon blockade mechanism. These results will help to guide the implementation of the single photon emitter in the Rydberg atoms-cavity system.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data have been included in the paper.]

References

  1. H. Paul, Rev. Mod. Phys. 54, 1061–1102 (1982)

    Article  ADS  Google Scholar 

  2. H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691–695 (1977)

    Article  ADS  Google Scholar 

  3. X.T. Zou, L. Mandel, Phys. Rev. A 41, 475–476 (1990)

    Article  ADS  Google Scholar 

  4. D. Stoler, B. Yurke, Phys. Rev. A 34, 3143–3147 (1986)

    Article  ADS  Google Scholar 

  5. M.H. Mahran, M. Venkata Satyanarayana, Phys. Rev. A 34, 640–643 (1986)

  6. A. Kiraz, M. Atatüre, A. Imamoğlu, Phys. Rev. A 69, 032305 (2004)

    Article  ADS  Google Scholar 

  7. Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, G. J. Milburn, Rev. Mod. Phys., 79, 135–174 (2007)

  8. B. Lounis, M. Orrit, Rep. Prog. Phys. 68, 1129–1179 (2005)

    Article  ADS  Google Scholar 

  9. P. Yao, V.S.C. Manga Rao, S. Hughes, Laser Photon. Rev., 4, 499–516 (2010)

  10. W. Leoński, R. Tanaś, Phys. Rev. A 49, R20–R23 (1994)

    Article  ADS  Google Scholar 

  11. A. Kuhn, M. Hennrich, G. Rempe, Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  12. A. Le Boité, M.-J. Hwang, H. Nha, M.B. Plenio, Phys. Rev. A 94, 033827 (2016)

  13. Y. Liu, X. Xun-Wei, A. Miranowicz, F. Nori, Phys. Rev. A 89, 04818 (2014)

  14. A.J. Hoffman, S.J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H.E. Türeci, A.A. Houck, Phys. Rev. Lett. 107, 053602 (2011)

    Article  ADS  Google Scholar 

  15. X. Xun-Wei, Y.-J. Li, Y. Liu, Phys. Rev. A 87, 025803 (2013)

  16. J.-Q. Liao, F. Nori, Phys. Rev. A 88, 023853 (2013)

  17. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  18. T.C.H. Liew, V. Savona, Phys. Rev. Lett. 104, 183601 (2010)

    Article  ADS  Google Scholar 

  19. H. Flayac, V. Savona, Phys. Rev. A 96, 053810 (2017)

    Article  ADS  Google Scholar 

  20. Y.H. Zhou, H.Z. Shen, X.X. Yi, Phys. Rev. A 92, 023838 (2015)

    Article  ADS  Google Scholar 

  21. M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti, Phys. Rev. A 83, 021802 (2011)

    Article  ADS  Google Scholar 

  22. M.-C. Li, A. Chen, Appl. Sci. 9, 980 (2019)

  23. X. Liang, Z. Duan, Q. Guo, C. Liu, S. Guan, Y. Ren, Phys. Rev. A 100, 063834 (2019)

  24. H.J. Snijders, J.A. Frey, J. Norman, H. Flayac, V. Savona, A.C. Gossard, J.E. Bowers, M.P. van Exter, D. Bouwmeester, W. Löffler, Phys. Rev. Lett. 121, 043601 (2018)

    Article  ADS  Google Scholar 

  25. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, Jérôme. Estève, Phys. Rev. Lett. 121, 043602 (2018)

  26. G.T. Foster, S.L. Mielke, L.A. Orozco, Phys. Rev. A 61, 053821 (2000)

    Article  ADS  Google Scholar 

  27. D. Gerace, V. Savona, Phys. Rev. A 89, 031803 (2014)

    Article  ADS  Google Scholar 

  28. S. Ferretti, V. Savona, D. Gerace, New J. Phys. 15, 025012 (2013)

    Article  ADS  Google Scholar 

  29. X. Xun-Wei, Y. Li, Phys. Rev. A 90, 043822 (2014)

  30. B. Sarma, A.K. Sarma, Phys. Rev. A 96, 053827 (2017)

    Article  ADS  Google Scholar 

  31. H. Wang, G. Xiu, Y. Liu, A. Miranowicz, F. Nori, Phys. Rev. A 92, 033806 (2015)

  32. D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, H.-F. Wang, New J. Phys. 22, 093006 (2020)

  33. M.-A. Lemonde, N. Didier, A.A. Clerk, Phys. Rev. A 90, 063824 (2014)

  34. M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  35. M. Saffman, J. Phys. B: Atomic Mol. Opt. Phys. 49, 202001 (2016)

  36. O. Firstenberg, C.S. Adams, S. Hofferberth, J. Phys. B: Atom. Mol. Opt. Phys. 49, 152003 (2016)

  37. J.-F. Huang, J.-Q. Liao, and C.P. Sun. Phys. Rev. A 87, 023822 (2013)

  38. A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, P. Grangier, New J. Phys. 16, 043020 (2014)

    Article  ADS  Google Scholar 

  39. J.D. Pritchard, C.S. Adams, K. Mølmer, Phys. Rev. Lett. 108, 043601 (2012)

    Article  ADS  Google Scholar 

  40. K. Hou, C.J. Zhu, Y.P. Yang, G.S. Agarwal, Phys. Rev. A 100, 063817 (2019)

    Article  ADS  Google Scholar 

  41. C.J. Zhu, K. Hou, Y.P. Yang, L. Deng, Photon. Res. 9, 1264–1271 (2021)

    Article  Google Scholar 

  42. M.-O. Pleinert, J. von Zanthier, G.S. Agarwal, Optica 4, 779–785 (2017)

  43. C.J. Zhu, Y.P. Yang, G.S. Agarwal, Phys. Rev. A 95, 063842 (2017)

    Article  ADS  Google Scholar 

  44. B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, G. Rempe, Nat. Photonics 13, 110–115 (2019)

    Article  ADS  Google Scholar 

  45. L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, A. Browaeys, Phys. Rev. Lett. 110, 263201 (2013)

    Article  ADS  Google Scholar 

  46. I.I. Beterov, I.I. Ryabtsev, D.B. Tretyakov, V.M. Entin, Phys. Rev. A 79, 052504 (2009)

    Article  ADS  Google Scholar 

  47. Y.-G. Liu, K. Xia, S.-L. Zhu, Opt. Express 29, 9942–9959 (2021)

Download references

Acknowledgements

This work was supported by NSFC under Grant No. 11874190 and No. 12047501. Support was also provided by Supercomputing Center of Lanzhou University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Lei Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Tan, L. Photon antibunching in a cavity-QED system with two Rydberg–Rydberg interaction atoms. Eur. Phys. J. D 75, 312 (2021). https://doi.org/10.1140/epjd/s10053-021-00321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00321-2

Navigation