Skip to main content
Log in

Trapping dielectric Rayleigh particles with tightly focused pin-like vortex beam

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Optical force exerted on the dielectric Rayleigh particles and tightly focused properties of circular polarized pin-like vortex beam are studied numerically in this paper. Firstly, we drive the expressions study the tightly focused properties of pin-like vortex beam. The numerical results show that the focal length keeps almost unchanged and the maximum intensity decreases with the increase of scaling factor. Then, the optical force exerted on the Rayleigh particle is studied based on the Rayleigh scattering model. The results show that smaller topological charges number and scaling factor of the pin-like vortex beams have greater longitudinal gradient force, transverse gradient force and trapping stiffness. Meanwhile, the trapping position in the beam propagation direction remains almost unchanged. The exponential parameter of the pin-like vortex beams has great influence on the propagation properties and tightly focused characteristics. Therefore, the stability of particle manipulation can be improved by changing the topological charges and scaling factor of the pin-like beams. These results have potential applications for optical trapping, optical storage and optical imaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscripts has associated data in a data repository. [Author's comment: All data included in this manuscript are available upon request by contacting with the corresponding author or the first author.]

References

  1. A. Ashkin, IEEE J. Sel. Top. Quant. Electron 6, 841 (2000)

    Article  ADS  Google Scholar 

  2. A. Ashkin, J. Dziedzic, J. Bjorkholm, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  3. M. Kim, T. Chang, B. Fields, Nat. Commun. 10, 1 (2019)

    Article  ADS  Google Scholar 

  4. G. Tkachenko, E. Brasselet, Nat. Commun. 5, 4491 (2014)

    Article  ADS  Google Scholar 

  5. X. Ke, L. Zhang, Eur. Phys. P.D 74, 45 (2020)

    Article  ADS  Google Scholar 

  6. M. Padgett, R. Bowman, Nat. Photonics 5, 343 (2011)

    Article  ADS  Google Scholar 

  7. Y. Jiang, K. Huang, X. Lu, Opt. Express 21, 24413 (2013)

    Article  ADS  Google Scholar 

  8. Y. Bai, M. Dong, M. Zhang, Nanoscale Res. Lett. 14, 252 (2019)

    Article  ADS  Google Scholar 

  9. H. Moradi, V. Shahabadi, E. Madadi, Opt. Express 27, 7266 (2019)

    Article  ADS  Google Scholar 

  10. W. Lu, X. Sun, H. Chen, Phys. Rev. A 99, 013817 (2019)

    Article  ADS  Google Scholar 

  11. H. Zhang, Y. Han, J. Wang, J. Quan, Spectrosc Radiat. Transfer 235, 309 (2019)

    Article  ADS  Google Scholar 

  12. N. Nossir, L. Dalil-Essakali, A. Belafhal, Opt. Quantum Electron 53, 1 (2021)

    Article  Google Scholar 

  13. O. Maragò, P. Jones, P. Gucciardi, Nat. nanotech 8, 807 (2013)

    Article  ADS  Google Scholar 

  14. Z. Zhang, X. Liang, M. Goutsoulas, APL Photon. 4, 076103 (2019)

    Article  ADS  Google Scholar 

  15. D. Li, D. Bongiovanni, M. Goutsoulas, H. Wu, D. Song, R. Morandotti, N. Efremidis, Z. Chen, Photon. Res. 9, 420872 (2021)

    Google Scholar 

  16. J. Curtis, D. Grier, Phys. Rev. Lett. 90, 133901 (2003)

    Article  ADS  Google Scholar 

  17. M. Padgett, Opt. Express 25, 11265 (2017)

    Article  ADS  Google Scholar 

  18. J. Zhou, Y. Liu, Y. Ke, Opt. Lett. 40, 3193 (2015)

    Article  ADS  Google Scholar 

  19. N. Efremidis, D. Christodoulides, Opt. Lett. 35, 4045 (2010)

    Article  ADS  Google Scholar 

  20. C. Sun, D. Deng, X. Yang, Opt. Express 28, 325 (2020)

    Article  ADS  Google Scholar 

  21. C. Rickenstorff, L. Gómez-Pavón, C. Sánchez, Opt. Express 28, 28713 (2020)

    Article  ADS  Google Scholar 

  22. M. Chen, S. Huang, W. Shao, Opt. Commun. 402, 672 (2017)

    Article  ADS  Google Scholar 

  23. B. Gu, D. Xu, G. Rui, Appl. optics 54, 8123 (2015)

    Article  ADS  Google Scholar 

  24. F. Mitri, J. Quan. Spectrosc. Radiat. 260, 107466 (2021)

    Article  Google Scholar 

  25. J. Gieseler, J. Gomez-Solano, A. Magazzù, I. Castillo, L. García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. Arzola, K. Volke-Sepúlveda, G. Volpe, Adv. Opt. Photon. 13, 74–241 (2021)

    Article  Google Scholar 

  26. C. Bustamante, Y. Chemla, S. Liu, M. Wang, Nat. Rev. Dis. Primers. 12, 1–25 (2021)

    Google Scholar 

Download references

Acknowledgements

The work is partially supported by the innovation foundation for Doctor Dissertation of Quanzhou Normal University (H19026) and Natural Science Foundation of Fujian Province (2019J01736, 2020J01777, 2021J01972).

Author information

Authors and Affiliations

Authors

Contributions

MC: theoretical research, numerical simulation and Original draft preparation. PW: Formal analysis. SL: Investigation. YZ: Software, Visualization. YY: methodology, review & editing. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yanzhong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wu, P., Zeng, Y. et al. Trapping dielectric Rayleigh particles with tightly focused pin-like vortex beam. Eur. Phys. J. D 76, 20 (2022). https://doi.org/10.1140/epjd/s10053-021-00320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00320-3

Navigation