Skip to main content
Log in

Geometric structure parameters of ground and singly excited states of helium

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Expectation values of geometric structure parameters \(\delta (\mathbf{r} ),\;\delta (\mathbf{r} _{12}),\;\frac{1}{r},\;r,\;r^2,\;\frac{1}{r_{12}},\;r_{12},\;r_{12}^2 ,\;r_<, r_>,\;\cos {\theta _{12}},\;\theta _{12}\) for ground state, singlet and triplet singly excited \(1n2s\;^{1,3}S^e,1snp\;^{1,3}P^o\) states with n up to 5 of helium were calculated in detail with Hylleraas-B-spline basis. Our results of \(\delta (\mathbf{r} )\) and \(\delta (\mathbf{r} _{12})\) for helium ground state have 14 and 6 significant digits, respectively, and have at least 9 significant digits for other parameters. Expectation values of \(\delta (\mathbf{r} ),\;\frac{1}{r},\;\frac{1}{r_{12}}\) have at least 9 significant digits and expectation values of \(r_<,\;r_>\) reach 8 significant digits for singly excited S and P states. Expectation values of \(\cos {\theta _{12}},\;\theta _{12}\) are in coincidence with data in the previous work. Our results from independent calculation with Hylleraas-B-spline method are in good agreement with the previous works.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no separate data, all data is provided in the paper.]

References

  1. K. Pachucki, Simple derivation of helium lamb shift. J. Phys. B: At. Mol. Opt. Phys. 31, 5123–5133 (1998). https://doi.org/10.1088/0953-4075/31/23/010

    Article  ADS  Google Scholar 

  2. K. Pachucki, Helium energy levels including \(m{\alpha }^{6}\) corrections. Phys. Rev. A 74, 062510 (2006). https://doi.org/10.1103/PhysRevA.74.062510

    ADS  MathSciNet  Google Scholar 

  3. G.W.F. Drake, Z.-C. Yan, Energies and relativistic corrections for the Rydberg states of helium: variational results and asymptotic analysis. Phys. Rev. A 46, 2378–2409 (1992). https://doi.org/10.1103/PhysRevA.46.2378

    Article  ADS  Google Scholar 

  4. R.O. Esquivel, A.V. Bunge, M.A. Núez, Spin density and density moments for the lithium ground state. Phys. Rev. A 43, 3373–3383 (1991). https://doi.org/10.1103/PhysRevA.43.3373

    Article  ADS  Google Scholar 

  5. R.N. Barnett, E.M. Johnson, W.A. Lester, Quantum Monte Carlo determination of the lithium 2 \(^{2}\)s\(\rightarrow \)2 \(^{2}\)p oscillator strength: higher precision. Phys. Rev. A 51, 2049–2052 (1995). https://doi.org/10.1103/PhysRevA.51.2049

    ADS  Google Scholar 

  6. R.A. Buckingham, J.E. Lennard-Jones, The quantum theory of atomic polarization \({\rm I}\)- polarization by a uniform field. Proc. Royal Soc. London Ser. A - Math. Phys. Sci. 160, 94–113 (1937). https://doi.org/10.1098/rspa.1937.0097

    ADS  MATH  Google Scholar 

  7. H.E. Montgomery, K.D. Sen, Dipole polarizabilities for a hydrogen atom confined in a penetrable sphere. Phys. Lett. A 376, 1992–1996 (2012). https://doi.org/10.1016/j.physleta.2012.04.056

    Article  ADS  Google Scholar 

  8. T. Koga, Average electron radii in many-electron atoms. J. Chem. Phys. 121, 3939–3940 (2004). https://doi.org/10.1063/1.1775790

    Article  ADS  Google Scholar 

  9. T. Koga, H. Matsuyama, Inner and outer radial density functions in many-electron atoms. Theoret. Chem. Acc. 115, 59–64 (2006)

    Article  Google Scholar 

  10. W. Kutzelnigg, G. Del Re, G. Berthier, Correlation coefficients for electronic wave functions. Phys. Rev. 172, 49–59 (1968). https://doi.org/10.1103/PhysRev.172.49

    Article  ADS  Google Scholar 

  11. A. Bürgers, J.M. Rost, Complex expectation values and Lewis structures for resonant states. J. Phys. B: Atomic, Molecular Opt. Phys. 29, 3825–3839 (1996). https://doi.org/10.1088/0953-4075/29/17/009

    Article  ADS  Google Scholar 

  12. T. Koga, Interelectronic angles of group 14, 15, and 16 atoms in their low-lying multiplet states. J. Chem. Phys. 119, 7145–7147 (2003). https://doi.org/10.1063/1.1605937

    Article  ADS  Google Scholar 

  13. T. Koga, H. Matsuyama, Correlated interelectronic angle densities of two-electron atoms in position and momentum spaces. Chem. Phys. Lett. 375, 565–570 (2003). https://doi.org/10.1016/S0009-2614(03)00913-8

    Article  ADS  Google Scholar 

  14. G.W. Drake, Atomic, Molecular and Optical Physics Handbook (Oxford University Press, Oxford, 1996)

    Google Scholar 

  15. G. W. F. Drake, Notes on solving the schr\(\ddot{\text{o}}\)dinger equation in hylleraas coordinates for helium atoms, https://drake.sharcnet.ca/wiki/index.php/Downloadable\_Resources

  16. A.M. Frolov, Field shifts and lowest order QED corrections for the ground 1s1 and 2s3 states of the helium atoms. J. Chem. Phys. 126, 104302 (2007). https://doi.org/10.1063/1.2709880

    Article  ADS  Google Scholar 

  17. T. Koga, H. Matsuyama, A.J. Thakkar, Interelectronic angles: Rounding out a geometric picture of the helium atom. Chem. Phys. Lett. 512, 287–289 (2011). https://doi.org/10.1016/j.cplett.2011.07.047

    Article  ADS  Google Scholar 

  18. H. Matsuyama, T. Koga, Average inner and outer radii in singly-excited 1 snl states of the he atom. Theoret. Chem. Acc. 118, 643–647 (2007)

    Article  MATH  Google Scholar 

  19. T. Koga, Interelectronic angle densities of atoms. J. Chem. Phys. 117, 10493–10498 (2002). https://doi.org/10.1063/1.1521433

    Article  ADS  Google Scholar 

  20. H. Matsuyama and T. Koga, Inner and outer radial density functions in singly-excited 1snl states of the he atom, Journal of Computational and Applied Mathematics 233, 1584–1589 ( 2010), special Functions, Information Theory, and Mathematical Physics. Special issue dedicated to Professor Jesus Sanchez Dehesa on the occasion of his 60th birthday doi: https://doi.org/10.1016/j.cam.2009.02.089

  21. L.G. Jiao, L.R. Zan, L. Zhu, Y.K. Ho, Comput. Theor. Chem. 1135, 1–5 (2018)

    Article  Google Scholar 

  22. L.G. Jiao, L.R. Zan, L. Zhu, Y.Z. Zhang, Y.K. Ho, Phys. Rev. A 100, 022509 (2019)

    Article  ADS  Google Scholar 

  23. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Appl. B-Splines Atomic Molecular Phys. 64, 1815–1943 (2001). https://doi.org/10.1088/0034-4885/64/12/205

    Article  Google Scholar 

  24. S.-J. Yang, X.-S. Mei, T.-Y. Shi, H.-X. Qiao, Phys. Rev. A 95, 062505 (2017)

    Article  ADS  Google Scholar 

  25. S.-J. Yang, Y.-B. Tang, Y.-H. Zhao, T.-Y. Shi, H.-X. Qiao, Phys. Rev. A 100, 042509 (2019)

    Article  ADS  Google Scholar 

  26. F.-F. Wu, S.-J. Yang, Y.-H. Zhang, J.-Y. Zhang, H.-X. Qiao, T.-Y. Shi, L.-Y. Tang, Phys. Rev. A 98, 040501(R) (2018)

    Article  ADS  Google Scholar 

  27. R.J. Drachman, A new global operator for two-particle delta functions. J. Phys. B: Atomic Molecular Phys. 14, 2733–2738 (1981). https://doi.org/10.1088/0022-3700/14/16/003

    Article  ADS  Google Scholar 

  28. N.M. Cann, R.J. Boyd, A.J. Thakkar, Statistical electron correlation coefficients for 29 states of the heliumlike ions. Int. J. Quantum Chem. 48, 33–42 (1993). https://doi.org/10.1002/qua.560480807

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12074295). The numerical calculations in this article have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoxue Qiao.

Ethics declarations

Conflicts of interest

The first author Yu confirms contribution to the papers as follows: theoretical derivation, program writing, analysis and interpretation of results and paper writing. The second author Zhou confirms contribution to the papers as follows: program correction and modification, data collection, analysis and interpretation of results. The corresponding author Qiao confirms contribution to the papers as follows: ideal design and source of computing resources. The contribution of Yu is the most important part of the present work. All authors reviewed the results and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhou, C. & Qiao, H. Geometric structure parameters of ground and singly excited states of helium. Eur. Phys. J. D 76, 26 (2022). https://doi.org/10.1140/epjd/s10053-021-00317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00317-y

Navigation