Skip to main content
Log in

Different atom trapping geometries with time averaged adiabatic potentials

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have theoretically studied the time averaged adiabatic potential (TAAP) scheme for realizing different atom trapping geometries such as double-well, ring, asymmetric ring. The versatility of TAAP scheme has been shown for control and manipulation of these atom trapping geometries via variation in time orbiting potential (TOP) fields and radio frequency (rf) fields. The conversion from one trapping geometry to another is also possible.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no additional data other than shown in figures. The numerical data related to the figures can be deposited as per the requirement of the journal.]

References

  1. H.J. Metcalf, Laser Cooling and Trapping (Springer, Berlin, 1999)

    Book  Google Scholar 

  2. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005). https://doi.org/10.1103/PhysRevLett.95.010402

    Article  ADS  Google Scholar 

  3. A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett. 106, 130401 (2011). https://doi.org/10.1103/PhysRevLett.106.130401

    Article  ADS  Google Scholar 

  4. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Nature Phys. 1, 57 (2005). https://doi.org/10.1038/nphys125

    Article  ADS  Google Scholar 

  5. A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, Eur. Phys. J. D 40, 271 (2006). https://doi.org/10.1140/epjd/e2006-00212-2

    Article  ADS  Google Scholar 

  6. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001). https://doi.org/10.1088/0026-1394/38/1/4

    Article  ADS  Google Scholar 

  7. T. Müller, M. Gilowski, M. Zaiser, P. Berg, C. Schubert, T. Wendrich, W. Ertmer, E.M. Rasel, Eur. Phys. J. D 53, 273 (2009). https://doi.org/10.1140/epjd/e2009-00139-0

    Article  ADS  Google Scholar 

  8. M.J. Mark, E. Haller, K. Lauber, J.G. Danzl, A.J. Daley, H.-C. Nägerl, Phys. Rev. Lett. 107, 175301 (2011). https://doi.org/10.1103/PhysRevLett.107.175301

    Article  ADS  Google Scholar 

  9. C. Ryu, P.W. Blackburn, A.A. Blinova, M.G. Boshier, Phys. Rev. Lett. 111, 205301 (2013). https://doi.org/10.1103/PhysRevLett.111.205301

    Article  ADS  Google Scholar 

  10. C.L.G. Alzar, AVS Quantum Sci. 1, 014702 (2019). https://doi.org/10.1116/1.5142003

    Article  ADS  Google Scholar 

  11. W. Wohlleben, F. Chevy, K. Madison, J. Dalibard, Eur. Phys. J. D 15, 237 (2001). https://doi.org/10.1007/s100530170171

    Article  ADS  Google Scholar 

  12. K. Merloti, R. Dubessy, L. Longchambon, A. Perrin, P.-E. Pottie, V. Lorent, H. Perrin, New J. Phys. 15, 033007 (2013). https://doi.org/10.1088/1367-2630/15/3/033007

    Article  ADS  Google Scholar 

  13. A. Chakraborty, S.R. Mishra, S.P. Ram, S.K. Tiwari, H.S. Rawat, J. Phys. B: Atomic, Molecular Opt. Phys. 49, 075304 (2016). https://doi.org/10.1088/0953-4075/49/7/075304

    Article  ADS  Google Scholar 

  14. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov Academic Press, (2000), vol. 42 of Advances In Atomic, Molecular, and Optical Physics, pp. 95 – 170, http://www.sciencedirect.com/science/article/pii/S1049250X0860186X

  15. O. Zobay, B.M. Garraway, Phys. Rev. Lett. 86, 1195 (2001). https://doi.org/10.1103/PhysRevLett.86.1195

    Article  ADS  Google Scholar 

  16. A. Chakraborty, S.R. Mishra, J. Korean Phys. Soc. 65, 1324 (2014). https://doi.org/10.3938/jkps.65.1324

    Article  ADS  Google Scholar 

  17. W.H. Heathcote, E. Nugent, B.T. Sheard, C.J. Foot, New J. Phys. 10, 043012 (2008). https://doi.org/10.1088/1367-2630/10/4/043012

    Article  ADS  Google Scholar 

  18. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nature Phys. 2, 710 (2006). https://doi.org/10.1038/nphys420

    Article  ADS  Google Scholar 

  19. B.E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, C.J. Foot, Phys. Rev. A 83, 043408 (2011). https://doi.org/10.1103/PhysRevA.83.043408

    Article  ADS  Google Scholar 

  20. R.K. Easwaran, L. Longchambon, P.-E. Pottie, V. Lorent, H. Perrin, B.M. Garraway, J. Phys. B: Atomic Molecular Opt. Phys. 43, 065302 (2010). https://doi.org/10.1088/0953-4075/43/6/065302

    Article  ADS  Google Scholar 

  21. O. Morizot, Y. Colombe, V. Lorent, H. Perrin, B.M. Garraway, Phys. Rev. A 74, 023617 (2006). https://doi.org/10.1103/PhysRevA.74.023617

    Article  ADS  Google Scholar 

  22. I. Lesanovsky, W. von Klitzing, Phys. Rev. Lett. 99, 083001 (2007). https://doi.org/10.1103/PhysRevLett.99.083001

    Article  ADS  Google Scholar 

  23. W. Petrich, M.H. Anderson, J.R. Ensher, E.A. Cornell, Phys. Rev. Lett. 74, 3352 (1995). https://doi.org/10.1103/PhysRevLett.74.3352

    Article  ADS  Google Scholar 

  24. M. Gildemeister, B.E. Sherlock, C.J. Foot, Phys. Rev. A 85, 053401 (2012). https://doi.org/10.1103/PhysRevA.85.053401

    Article  ADS  Google Scholar 

  25. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995), ISSN 0036-8075, https://science.sciencemag.org/content/269/5221/198

  26. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995). https://doi.org/10.1103/PhysRevLett.75.3969

    Article  ADS  Google Scholar 

  27. S. Hofferberth, B. Fischer, T. Schumm, J. Schmiedmayer, I. Lesanovsky, Phys. Rev. A 76, 013401 (2007). https://doi.org/10.1103/PhysRevA.76.013401

    Article  ADS  Google Scholar 

  28. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991). https://doi.org/10.1103/PhysRevLett.67.181

    Article  ADS  Google Scholar 

  29. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C.J. Bordé, A. Landragin et al., Phys. Rev. Lett. 97, 010402 (2006). https://doi.org/10.1103/PhysRevLett.97.010402

    Article  ADS  Google Scholar 

  30. O. Carnal, J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991). https://doi.org/10.1103/PhysRevLett.66.2689

    Article  ADS  Google Scholar 

  31. M. Gildemeister, Ph.D. thesis, University of Oxford (2010)

  32. M. Gildemeister, E. Nugent, B.E. Sherlock, M. Kubasik, B.T. Sheard, C.J. Foot, Phys. Rev. A 81, 031402 (2010). https://doi.org/10.1103/PhysRevA.81.031402

    Article  ADS  Google Scholar 

  33. P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, W. von Klitzing, New J. Phys. 18, 075014 (2016). https://doi.org/10.1088/1367-2630/18/7/075014

    Article  ADS  Google Scholar 

  34. S. Pandey, H. Mas, G. Vasilakis, W. von Klitzing, Phys. Rev. Lett. 126, 170402 (2021). https://doi.org/10.1103/PhysRevLett.126.170402

    Article  ADS  Google Scholar 

  35. S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V. Bolpasi, G. Vasilakis, K. Poulios, W. von Klitzing, Nature 570, 205 (2019). https://doi.org/10.1038/s41586-019-1273-5

    Article  ADS  Google Scholar 

  36. S. Gupta, K.W. Murch, K.L. Moore, T.P. Purdy, D.M. Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005). https://doi.org/10.1103/PhysRevLett.95.143201

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sourabh Sarkar acknowledges the financial support by Raja Ramanna Centre for Advanced Technology, Indore under Homi Bhabha National Institute (HBNI) programme.

Author information

Authors and Affiliations

Authors

Contributions

Sourabh Sarkar and S. P. Ram have understood the theoretical problem and performed the numerical calculations. V. B. Tiwari has provided necessary inputs for the work. S. R. Mishra has conceptualized the problem. All the authors have contributed in preparation of the manuscript

Corresponding author

Correspondence to Sourabh Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Ram, S.P., Tiwari, V.B. et al. Different atom trapping geometries with time averaged adiabatic potentials. Eur. Phys. J. D 75, 281 (2021). https://doi.org/10.1140/epjd/s10053-021-00290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00290-6

Navigation