Skip to main content
Log in

Dissociative electron attachment to methyl isocyanide

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We experimentally probed the dissociation of methyl isocyanide, CH\(_3\)NC, via low-energy electron attachment. We have measured the absolute dissociative electron attachment (DEA) cross section for each of the produced ions as a function of incident electron energy. We were able to observe the CH\(_2^-\), CH\(_3^-\), CN\(^-\), CNC\(^-\), CHNC\(^-\) and CH\(_2\)NC\(^-\) anionic fragments as DEA products. Our experimental results are consistent with a previous report, and in addition, we observed the CH\(_2^-\) anion for the first time. To support these experimental results, we also have performed density functional theory (DFT) calculation at the B3LYP/aug-cc-pVTZ level of theory to find out which reaction channel(s) lead to the formation of a given anion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. R.A. Alvarez, C.B. Moore, Science 263, 205 (1994). https://science.sciencemag.org/content/263/5144/205.full.pdf

  2. S.G. Antonsen, A.J.C. Bunkan, T. Mikoviny, C.J. Nielsen, Y. Stenstrøm, A. Wisthaler, E. Zardin, J. Phys. Chem. A 124, 6562 (2020). https://doi.org/10.1021/acs.jpca.0c05127 (pMID: 32663395)

    Article  Google Scholar 

  3. W.M. Irvine, F.P. Schloerb, Astrophys. J. 282, 516 (1984)

    Article  ADS  Google Scholar 

  4. A.J. Remijan, J.M. Hollis, F.J. Lovas, D.F. Plusquellic, P.R. Jewell, Astrophys. J. 632, 333 (2005)

    Article  ADS  Google Scholar 

  5. H. Calcutt, M.R. Fiechter, E.R. Willis, H.S.P. Müller, R.T. Garrod, J.K. Jørgensen, S.F. Wampfler, T.L. Bourke, A. Coutens, M.N. Drozdovskaya et al., A&A 617, A95 (2018)

    Article  ADS  Google Scholar 

  6. A. Mariani, D.A. Russell, T. Javelle, J.D. Sutherland, J. Am. Chem. Soc. 140, 8657 (2018). https://doi.org/10.1021/jacs.8b05189 (pMID: 29965757)

    Article  Google Scholar 

  7. M. Heni, E. Illenberger, Int. J. Mass Spectrom. Ion Process. 73, 127 (1986)

    Article  ADS  Google Scholar 

  8. W. Sailer, A. Pelc, P. Limão-Vieira, N. Mason, J. Limtrakul, P. Scheier, M. Probst, T. Märk, Chem. Phys. Lett. 381, 216 (2003)

    Article  ADS  Google Scholar 

  9. J.A. Stockdale, F.J. Davis, R.N. Compton, C.E. Klots, J. Chem. Phys. 60, 4279 (1974). https://doi.org/10.1063/1.1680900

    Article  ADS  Google Scholar 

  10. H. Li, X.F. Gao, X. Meng, S.X. Tian, J. Phys. Chem. A 123, 9089 (2019). https://doi.org/10.1021/acs.jpca.9b07399 (pMID: 31525926)

    Article  Google Scholar 

  11. T.F.M. Luxford, J. Kočišek, L. Tiefenthaler, P. Nag, Eur. Phys. J. D 75, 230 (2021)

    Article  ADS  Google Scholar 

  12. A.P. Hitchcock, M. Tronc, A. Modelli, J. Phys. Chem. 93, 3068 (1989). https://doi.org/10.1021/j100345a039

    Article  Google Scholar 

  13. F. Edard, A.P. Hitchcock, M. Tronc, J. Phys. Chem. 94, 2768 (1990). https://doi.org/10.1021/j100370a010

    Article  Google Scholar 

  14. M. Gochel-Dupuis, J. Delwiche, M.J. Hubin-Franskin, J.E. Collin, F. Edard, M. Tronc, J. Am. Chem. Soc. 112, 5425 (1990). https://doi.org/10.1021/ja00170a005

    Article  Google Scholar 

  15. R. Janečková, D. Kubala, O. May, J. Fedor, M. Allan, Phys. Rev. Lett. 111, 213201 (2013)

    Article  ADS  Google Scholar 

  16. M. Zawadzki, T.F.M. Luxford, J. Kočišek, J. Phys. Chem. A 124, 9427 (2020). https://doi.org/10.1021/acs.jpca.0c07283 (pMID: 33125242)

    Article  Google Scholar 

  17. P. Nag, M. Polášek, J. Fedor, Phys. Rev. A 99, 052705 (2019)

    Article  ADS  Google Scholar 

  18. P. Nag, M. Tarana, J. Fedor, Phys. Rev. A 103, 032830 (2021)

    Article  ADS  Google Scholar 

  19. E. Krishnakumar, S.K. Srivastava, J. Phys. B: Atomic Molecular Optical Phys. 21, 1055 (1988)

    Article  ADS  Google Scholar 

  20. M. Stepanović, Y. Pariat, M. Allan, J. Chem. Phys. 110, 11376 (1999). https://doi.org/10.1063/1.479078

    Article  ADS  Google Scholar 

  21. J. Langer, M. Zawadzki, M. Fárník, J. Pinkas, J. Fedor, J. Kočišek, Eur. Phys. J. D 72, 112 (2018)

    Article  ADS  Google Scholar 

  22. M. Ranković, P. Nag, M. Zawadzki, L. Ballauf, J. Žabka, M. Polášek, J. Kočišek, J. Fedor, Phys. Rev. A 98, 052708 (2018)

    Article  ADS  Google Scholar 

  23. J. Fedor, O. May, M. Allan, Phys. Rev. A 78, 032701 (2008)

    Article  ADS  Google Scholar 

  24. M. Allan, J. Electron Spectrosc. Related Phenom. 48, 219 (1989)

    Article  Google Scholar 

  25. R. Dressler, M. Allan, Chem. Phys. 92, 449 (1985)

    Article  Google Scholar 

  26. P. Nag, D. Nandi, Phys. Rev. A 91, 052705 (2015)

    Article  ADS  Google Scholar 

  27. O. Orient, S. Srivastava, Chem. Phys. Lett. 96, 681 (1983)

    Article  ADS  Google Scholar 

  28. D. Rapp, D.D. Briglia, J. Chem. Phys. 43, 1480 (1965). https://doi.org/10.1063/1.1696958

    Article  ADS  Google Scholar 

  29. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji et al., Gaussian\({\tilde{\,}}^{}16\) Revision C.01 (2016), gaussian Inc. Wallingford CT

  30. R. Janečková, O. May, J. Fedor, Phys. Rev. A 86, 052702 (2012)

    Article  ADS  Google Scholar 

  31. A.D. Bass, J.H. Bredehöft, E. Böhler, L. Sanche, P. Swiderek, Eur. Phys. J. D 66, 53 (2012)

    Article  ADS  Google Scholar 

  32. E. Illenberger, J. Momigny, Gaseous Molecular Ions: An Introduction to Elementary Processes Induced by Ionization (Steinkopff, Heidelberg, 1992)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr Juraj Fedor and Dr Jaroslav Koĉiŝek for valuable suggestions and fruitful discussion throughout the entire stage of the present work. This work has been supported by the Czech Science Foundation Project Nr. 20-11460S and Ministry of Education, Youth and Sport of the Czech Republic Project Nr. LTAUSA19031.

Author information

Authors and Affiliations

Authors

Contributions

TFML performed the experiments with TEM-QMS set-up and the quantum chemical calculations. PN performed the experiments with the DEA-VMI set-up. Both the authors prepared the manuscript and approved it.

Corresponding author

Correspondence to Pamir Nag.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luxford, T.F.M., Nag, P. Dissociative electron attachment to methyl isocyanide. Eur. Phys. J. D 75, 270 (2021). https://doi.org/10.1140/epjd/s10053-021-00278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00278-2

Navigation