Skip to main content
Log in

Controlling negative refractive index of degenerated three-level \(\Lambda \)-type system by external light and magnetic fields

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have achieved the negative refractive index for the probe light in a degenerated three-level \(\Lambda \)-type atomic medium under electromagnetically induced transparency. The width of the frequency band of the negative refractive index can be changed by adjusting the coupling light intensity, while the position of the frequency band of the negative refractive index can be shifted to low or high frequency region by varying the coupling light frequency or the external magnetic field. Furthermore, the positive refractive index for a given probe frequency can be converted to the negative refractive index and vice versa by adjusting the strength or the sign of the magnetic field. This means that we can use the external magnetic field as a “knob” to control the sign of the refractive index of the material which can obtain the desired material with positive or negative index.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No datasets were generated or analyzed during the current study. The results are based on theoretical analysis.]

References

  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\upvarepsilon \) and \(\upmu \). Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  3. L. Chen, S. He, L. Shen, Finite-size effects of a left-handed material slab on the image quality. Phys. Rev. Lett. 92, 107404 (2004)

    Article  ADS  Google Scholar 

  4. K. Aydin, I. Bulu, E. Ozbay, Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett 90, 254102 (2007)

    Article  ADS  Google Scholar 

  5. A. Lakhtakia, Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums (alias left-handed materials). Int. J. Electron. Commun. (AEU) 58, 229 (2004)

    Article  Google Scholar 

  6. J.M. Williams, Some problems with negative refraction. Phys. Rev. Lett. 87, 249703 (2001)

    Article  ADS  Google Scholar 

  7. Y.P. Yang, J.P. Xu, H. Chen, S.Y. Zhu, Quantum interference enhancement with left-handed materials. Phys. Rev. Lett. 100, 043601 (2008)

    Article  ADS  Google Scholar 

  8. V. Yannopapas, E. Paspalakis, N.V. Vitanov, Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2008)

    Article  ADS  Google Scholar 

  9. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  10. J. Pendry, Positively negative. Nature 423, 22 (2003)

    Article  ADS  Google Scholar 

  11. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: negative refraction by photonic crystals. Nature (London) 423, 604 (2003)

    Article  ADS  Google Scholar 

  12. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, S. Anand, Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004)

    Article  ADS  Google Scholar 

  13. G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, Planar negative refractive index media using periodically L–C loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702 (2002)

    Article  ADS  Google Scholar 

  14. J.B. Pendry, A chiral route to negative refraction. Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  15. T.G. Mackay, A. Lakhtakia, Plane waves with negative phase velocity in Faraday chiral mediums. Phys. Rev. E 69, 026602 (2004)

    Article  ADS  Google Scholar 

  16. V. Yannopapas, Negative index of refraction in artificial chiral materials. J. Phys. Condens. Matter 18, 6883 (2006)

    Article  ADS  Google Scholar 

  17. Z. Li, M. Mutlu, E. Ozbay, Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt. 15, 023001 (2013)

    Article  ADS  Google Scholar 

  18. K.J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  19. M.O. Oktel, O.E. Mustecaplioglu, Electromagnetically induced left-handedness in a dense gas of three-level atoms. Phys. Rev. A 70, 053806 (2004)

    Article  ADS  Google Scholar 

  20. J.Q. Shen, Z.C. Ruan, S. He, How to realize a negative refractive index material at the atomic level in an optical frequency range. J. Zhejiang Univ. Science (in Chinese) 5, 1322 (2004)

    Article  Google Scholar 

  21. C.M. Krowne, J.Q. Shen, Dressed-state mixed-parity transitions for realizing negative refractive index. Phys. Rev. A 79, 023818 (2009)

    Article  ADS  Google Scholar 

  22. Q. Thommen, P. Mandel, Electromagnetically induced left handedness in optically excited four-level atomic media. Phys. Rev. Lett. 96, 053601 (2006)

    Article  ADS  Google Scholar 

  23. J. Kastel, M. Fleischhauer, S.F. Yelin, R.L. Walsworth, Tunable negative refraction without absorption via electromagnetically induced chirality. Phys. Rev. Lett. 99, 073602 (2007)

    Article  ADS  Google Scholar 

  24. C. Liu, J. Zhang, J. Liu, G. Jin, The electromagnetically induced negative refractive index in the Er3\(+\): YAlO\(_3\) crystal. J. Phys. B: At. Mol. Opt. Phys. 42, 095402 (2009)

    Article  ADS  Google Scholar 

  25. H.J. Zhang, Y.P. Niu, S.Q. Gong, Electromagnetically induced negative refractive index in a V-type four-level atomic system. Phys. Lett. A 363, 497 (2007)

    Article  ADS  Google Scholar 

  26. S.C. Zhao, Z.-D. Liu, Q.-X. Wu, Left-handedness without absorption in the four-level Y-type atomic medium. Chin. Phys. B 19, 014211 (2010)

    Article  ADS  Google Scholar 

  27. S.C. Zhao, Z.-D. Liu, Q.-X. Wu, Negative refraction without absorption via both coherent and incoherent fields in a four-level left-handed atomic system. Opt. Commun. 283, 3301–3304 (2010)

    Article  ADS  Google Scholar 

  28. S.C. Zhao, Z.-D. Liu, Q.-X. Wu, Zero absorption and a large negative refractive index in a left-handed four-level atomic medium. J. Phys. B: At. Mol. Opt. Phys. 43, 045505 (2010)

    Article  ADS  Google Scholar 

  29. Z.-Q. Zhang, Z.-D. Liug, S.C. Zhao, J. Zheng, Y.-F. Ji, N. Liu, Negative refractive index in a four-level atomic system. Chin. Phys. B 20, 124202 (2011)

    Article  ADS  Google Scholar 

  30. A. Othman, D. Yevick, Enhanced negative refractive index control in a 5-level system. J. Mod. Opt. 64, 1208–1214 (2016)

    Article  ADS  Google Scholar 

  31. H.G. Al-Toki, A.H. Al-Khursan, Negative refraction in the double quantum dot system. Opt. Quant. Electron. 52, 467 (2020)

    Article  Google Scholar 

  32. D.H. Werner, D.-H. Kwon, I.-C. Khoo, Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt. Exp. 15, 3342 (2007)

    Article  ADS  Google Scholar 

  33. H. Zhang, Y. Niu, H. Sun, J. Luo, S. Gong, Phase control of switching from positive to negative index material in a four-level atomic system. J. Phys. B: At. Mol. Opt. Phys. 41, 125503 (2008)

    Article  ADS  Google Scholar 

  34. N. Ba, J.-W. Gao, W. Fan, D.-W. Wang, Q.-R. Ma, R. Wang, J.-H. Wu, Electromagnetically induced negative refraction in an atomic system with spontaneously generated coherence. Opt. Commun. 281, 5566–5570 (2008)

    Article  ADS  Google Scholar 

  35. S. Dutta, K.R. Dastidar, Realization of a negative refractive index in a three-level \(\Lambda \) system via spontaneously generated coherence. J. Phys. B: At. Mol. Opt. Phys. 43, 215503 (2010)

    Article  ADS  Google Scholar 

  36. K.I. Osman, A. Joshi, Left-handedness in K-type multilevel system in the presence of spontaneously generated coherence. Opt. Commun. 285, 3162–3168 (2012)

    Article  ADS  Google Scholar 

  37. L.V. Doai, Role of incoherent pumping field on control of optical bistability in a closed three-level ladder atomic system. Eur. Phys. J. D 74, 171 (2020)

    Article  ADS  Google Scholar 

  38. N.H. Bang, D.X. Khoa, L.V. Doai, Controlling self-Kerr nonlinearity with an external magnetic field in a degenerate two-level inhomogeneously broadened medium. Phys. Lett. A 384, 126234 (2020)

    Article  MathSciNet  Google Scholar 

  39. N.H. Bang, L.V. Doai, Modifying optical properties of three-level V-type atomic medium by varying external magnetic field. Phys. Scr. 95, 105103 (2020)

    Article  ADS  Google Scholar 

  40. N.V. Phu, N.H. Bang, L.V. Doai, Controlling group velocity via an external magnetic field in a degenerated three-level lambda-type atomic system. Photonic Lett. Pol. 13, 13–15 (2021)

    Article  Google Scholar 

  41. Daniel Adam Steck, \(\text{Rb}^{87}\) D Line Data: http://steck.us/alkalidata

Download references

Funding

Vietnamese National Foundation of Science and Technology Development (103.03-2019.383).

Author information

Authors and Affiliations

Authors

Contributions

NHB and LVD conceived of the presented idea, developed the theory and performed the analytic calculations. All authors co-wrote the paper, discussed the results and contributed equally to the final manuscript.

Corresponding author

Correspondence to Le Van Doai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, N.H., Van Doai, L. Controlling negative refractive index of degenerated three-level \(\Lambda \)-type system by external light and magnetic fields. Eur. Phys. J. D 75, 261 (2021). https://doi.org/10.1140/epjd/s10053-021-00275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00275-5

Navigation