Skip to main content
Log in

Positron-induced scattering from pentane isomers beyond ionization threshold

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The binary encounter Bethe model (BEB) for positron is invoked to obtain the positron impact direct ionization cross sections for pentane isomers from ionization threshold to 5000 eV. The BEB results are compared with the theoretical results, and the agreement is found to be good. The elastic cross sections (ECS) are obtained using the single-center expansion (SCE) approach. The incoherently summed elastic and direct ionization cross sections are in an excellent agreement with the experimentally measured total cross sections (TCS) from 40 eV onwards. The cross sections for a particular type of a process were similar for all the isomers, thus indicating absence of isomerism in positron impact scattering. The differences in the magnitude of the differential cross sections (DCS) of the three isomers were small. But the isomer effect could be assessed by the contribution of different partial waves in the DCS, where for neo-pentane the oscillatory pattern differs from the n-pentane and iso-pentane. We have also compared the electron and positron BEB ionization cross sections. Beyond 500 eV, cross sections from both the projectiles show merging trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data associated with the present work. However, the numeric values of the graphs are available on request.]

References

  1. S.A. Stout, Z. Wang, Standard Handbook Oil Spill Environmental Forensics, 2nd edn. (Elsevier, Hoboken, 2016)

    Google Scholar 

  2. P. Lees, R. Hunter, P. Reeves, P.-L. Toutain, J. Veterinary Pharmacol. Therapeutics 35, 17 (2012)

    Article  Google Scholar 

  3. S.W. Smith, Toxicol. Sci. 110(1), 4 (2009)

    Article  Google Scholar 

  4. B.G. Katzung, S.B. Masters, A.J. Trever (eds.), Basic and Clinical Pharmacology, 11th edn. (Tata Macgraw- Hill, India, 2009)

  5. L.L. Brunton, K.L. Parker, D.K. Blumenthal, I.L.O. Buxton (eds.), Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 12th edn. (The MacGraw Hill Company, New York, 2011)

  6. L. Agranat, H. Caner, J. Cadwell, Nat. Rev. Drug Discov. 1, 753 (2002)

    Article  Google Scholar 

  7. http://cccbdb.nist.gov

  8. https://webbook.nist.gov/chemistry/

  9. M. Kimura, O. Sueoka, A. Hamada, Y. Itikawa, in Advances in Chemical Physics, eds. I. Prigogine and S. A. Rice 111, 537 (Wiley, 2000)

  10. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 251 (2019)

    Article  ADS  Google Scholar 

  11. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 199 (2019)

    Article  ADS  Google Scholar 

  12. A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana-J. Phys. 94, 73 (2020)

    Article  ADS  Google Scholar 

  13. L. Chiari, A. Zecca, F. Blanco, G. García, M. Brunger, J. Chem. Phys. 144(8), 084301 (2016)

    Article  ADS  Google Scholar 

  14. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Plasmas. 26, 063506 (2019)

    Article  ADS  Google Scholar 

  15. M.H.F. Bettega, C. Winstead, V. McKoy, Phys. Rev. A 82, 062709 (2010)

    Article  ADS  Google Scholar 

  16. S. Stefanowska-Tur, P. Mozejko, El\({dot{z}}\)bieta Ptasinska-Denga, C. Szmytkowski, J. Chem. Phys. 150, 094303 (2019)

  17. K. Fedus, C. Navarro, L.R. Hargreaves, M.A. Khakoo, A.S. Barbosa, M.H.F. Bettega, Phys. Rev A. 91, 042701 (2015)

    Article  ADS  Google Scholar 

  18. A. De Sarkar, S. Biswas, N. Gupta, J. High Energy Astrophys. 29, 1 (2021)

    Article  ADS  Google Scholar 

  19. N. Guessoum, Eur. Phys. J. D 68, 137 (2014)

    Article  ADS  Google Scholar 

  20. L.D. Hulett Jr., D.L. Donohue, J. Xu, T.A. Lewis, S.A. McLuckey, G.L. Glish, Chem. Phys. Lett. 216, 236 (1993)

    Article  ADS  Google Scholar 

  21. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  22. G. Sarri, K. Poder, J.M. Cole et al., Nat. Commun. 6, 6747 (2015)

    Article  ADS  Google Scholar 

  23. S. Marjanović, A. Banković, D. Cassidy, B. Cooper, A. Deller, S. Dujko, Z. Lj, J. Phys. Petrović, B: At., Mol. Opt. Phys. 49, 215001 (2016)

  24. W.J. Tattersall, D.G. Cocks, G.J. Boyle, M.J. Brunger, S.J. Buckman, G. García, Z.L. Petrović, J.P. Sullivan, R.D. White, Plasma Sour. Sci. Technol. 26, 045010 (2017)

    Article  ADS  Google Scholar 

  25. G.J. Boyle, W.J. Tattersall, D.G. Cocks, S. Dujko, R.D. White, Phys. Rev. A 91, 052710 (2015)

    Article  ADS  Google Scholar 

  26. F. Blanco, A.M. Roldan, K. Krupa et al., J. Phys. B: At. Mol. Opt. Phys. 49, 145001 (2016)

    Article  ADS  Google Scholar 

  27. F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M.C. Fuss, A.G. Sanz, G. García, Eur. Phys. J. D 67, 199 (2013)

    Article  ADS  Google Scholar 

  28. A.G. Sanz, M.C. Fuss, A. Muñoz, F. Blanco, P. Limão-Vieira, M.J. Brunger, S.J. Buckman, G. García, Int. J. Radiat. Biol. 88, 71 (2012)

    Article  Google Scholar 

  29. R.L. Wahl, J.W. Buchanan, Principles and Practice of Positron Emission Tomography (Lippincott, Williams and Wilkins, Philadelphia, PA, USA, 2002)

  30. A.S. Kadyrov, I. Bray, J. Phys. B: At Mol. Opt. Phys. 49, 222002 (2016)

    Article  ADS  Google Scholar 

  31. M.C. Zammit, D.V. Fursa, J.S. Savage, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 50, 123001 (2017)

    Article  ADS  Google Scholar 

  32. M.C. Zammit, D.V. Fursa, I. Bray, Phys. Rev. A 90, 022711 (2014)

    Article  ADS  Google Scholar 

  33. R. Utamuratov, D.V. Fursa, A.S. Kadyrov, I.B. Abdurakhmanov, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 54, 095201 (2021)

    Article  ADS  Google Scholar 

  34. K. Ratnavelu, M.J. Brunger, S.J. Buckman, J. Phys. Chem. Ref. Data 48, 023102 (2019)

    Article  ADS  Google Scholar 

  35. J.R. Machacek, F. Blanco, G. Garcia, S.J. Buckman, J.P. Sullivan, J. Phys. B: At. Mol. Opt. Phys. 49, 064003 (2016)

    Article  ADS  Google Scholar 

  36. K. Fedus, G.P. Karwasz, Phys. Rev A 100, 062702 (2019)

    Article  ADS  Google Scholar 

  37. R. Utamuratov, A.S. Kadyrov, D.V. Fursa, M.C. Zammit, I. Bray, Phys. Rev. A 92, 032707 (2015)

    Article  ADS  Google Scholar 

  38. N. Sinha, B. Antony, Mol. Phys. 117(18), 2527 (2019)

    Article  ADS  Google Scholar 

  39. M.J. Brunger, S.J. Buckman, K. Ratnavelu, J. Phys. Chem. Ref. Data 46, 023102 (2017)

    Article  ADS  Google Scholar 

  40. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 128, 139 (2000)

    Article  ADS  Google Scholar 

  41. F.A. Gianturco, R.R. Lucchese, N. Sanna, A. Talamo, A Generalized Single Center Approach for Treating Electron Scattering from Polyatomic Molecules, in Electron Collisions with Molecules, Clusters and Surfaces, Ed (H. Ehrhardt and L. A. Morgan, Plenum, New York, 1994)

  42. Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  43. H. Tanaka, M.J. Brunger, l. Campbell, H. Kato, M. Hoshino, A. R. P. Rau. Rev. Mod. Phys. 88, 025004 (2016)

  44. H. Klar, J. Phys. B 14, 4165 (1981)

    Article  ADS  Google Scholar 

  45. V. Sahgal, A. Bharadvaja, K.L. Baluja, Phys. B: At. Mol. Opt. Phys. 54, 075202 (2021)

    Article  ADS  Google Scholar 

  46. A.K. Arora, V. Sahgal, A. Bharadvaja, K.L. Baluja, Phys. Rev. A, 104, 022816 (2021)

  47. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  48. F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)

    Article  ADS  Google Scholar 

  49. I. Fabrikant, J. Phys. B: At. Mol. Opt. Phys. 49, 222005 (2016)

    Article  ADS  Google Scholar 

  50. GAUSSIAN 03, Gaussian, Inc., Wallingford, CT

  51. N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 180, 2544 (2009)

    Article  ADS  Google Scholar 

  52. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

  53. M. Bassi, A. Bharadvaja, K.L. Baluja, Eur. Phys. J. D 74, 232 (2020)

    Article  ADS  Google Scholar 

  54. R.T. Sugohara, M.-T. Lee, G.L.C. de Souza, M.G.P. Homem, I. Iga, Phys. Rev A 84, 062709 (2011)

    Article  ADS  Google Scholar 

  55. A. Bharadvaja, M. Bassi, A.K. Arora, K.L. Baluja, Plasma Sources Sci. Technol. 30, 095102 (2021)

Download references

Acknowledgements

The authors VS and AB are thankful to College authorities for providing necessary facilities to carry out the present study. The authors are also grateful to the Department of Biotechnology, Government of India, for motivating the students to take up research activities under Star College Scheme. VS is also thankful to Nidhi Sinha for providing the numerical data of her published results.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally involved in the present work.

Corresponding author

Correspondence to Anand Bharadvaja.

Additional information

A. K. Arora: On leave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A.K., Sahgal, V., Gupta, K.K. et al. Positron-induced scattering from pentane isomers beyond ionization threshold. Eur. Phys. J. D 75, 259 (2021). https://doi.org/10.1140/epjd/s10053-021-00273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00273-7

Navigation