Skip to main content

Work and heat in quantum CNOT gate operations

Abstract

In this paper, we derive the work and heat for two kinds of quantum bipartite systems: a closed one and an open one according to the scheme suggested in Ref. (Weimer et al. in EPL 83:30008, 2008). Then the results are used to investigate the evolution of the work and heat in a quantum CNOT gate operations. It is shown that the heat and work conversion cannot be performed in the closed quantum CNOT gate operations. However, the open quantum CNOT gate can be used to perform the conversion of heat and work. If at the beginning, a spin with a large energy-level difference has a greater probability of being in a highly excited state than the other, then the CNOT gate will work as a quantum engine, and if it is initially in highly excited states with a smaller probability than the other, the gate will work as a quantum refrigerator.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in In Proceedings of 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1994), pp. 124–134

  2. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    ADS  Article  Google Scholar 

  3. D.P. Divincenzo, Two-bit gates are universal for quantum computation. Phys. Rev. A 51(2), 1015–1022 (1995)

    ADS  Article  Google Scholar 

  4. A. Brodutch, D.R. Terno, Entanglement, discord and the power of quantum computation. Phys. Rev. A 83(1), 237–241 (2011)

    Article  Google Scholar 

  5. A. Barenco, A universal two-bit gate for quantum computation. Proc. Math. Phys. Sci. 449(1937), 679–683 (1995)

    MathSciNet  MATH  Google Scholar 

  6. H. Weimer, M.J. Henrich, F. Rempp, H. Schroder, G. Mahler, Local effective dynamics of quantum systems: a generalized approach to work and heat. EPL 83, 30008 (2008)

    ADS  Article  Google Scholar 

  7. A. Barenco, C.H. Bennett, R. Cleve, D.P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 5 (1995)

    Article  Google Scholar 

  8. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.M. Raimond, S. Haroche, Coherent operation of a tunable quantum phase gate in cavity qed. Phys. Rev. Lett. 83(24), 5166–5169 (1999)

    ADS  Article  Google Scholar 

  9. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. Divincenzo, A.R. Small, Quantum information processing using quantum dot spins and cavity qed. Phys. Rev. Lett. 83(20), 4204–4207 (1999)

    ADS  Article  Google Scholar 

  10. H.T. Quan, Y.X. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  11. R. Dann, R. Kosloff, P. Salamon, Quantum finite-time thermodynamics: insight from a single qubit engine. Entropy 1255, 09 (2020)

    MathSciNet  Google Scholar 

  12. K. Ono, S. Shevchenko, T. Mori, S. Moriyama, F. Nori, Analog of a quantum heat engine using a single-spin qubit. Phys. Rev. Lett. 08, 166802 (2020)

    ADS  Article  Google Scholar 

  13. A.O.-C.H. Hossein-Nejad, E.J. O’Reilly, Work, heat and entropy production in bipartite quantum systems. N. J. Phys. 17, 7 (2015)

  14. D. Valente, F. Brito, R. Ferreira, T. Werlang, Work on a quantum dipole by a single-photon pulse. Opt. Lett. 43(11), 2644 (2018)

    ADS  Article  Google Scholar 

  15. A.M. Tsirlin, V. Kazakov, A.A. Ahremenkov, N.A. Alimova, Thermodynamic constraints on temperature distribution in a stationary system with heat engine or refrigerator. J. Phys. D Appl. Phys. 39(19), 4269–4277 (2006)

    ADS  Article  Google Scholar 

  16. W. Dai, E. Luo, Y. Zhang, H. Ling, Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. J. Acoust. Soc. Am. 119(5), 2686–2692 (2006)

    ADS  Article  Google Scholar 

  17. M. Silaev, T.T. Heikkil, P. Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems. Phys. Rev. E 90(2), 22103–22103 (2014)

    ADS  Article  Google Scholar 

  18. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, vol. 29 (Oxford University Press, New York, 1995)

    Google Scholar 

  19. M.O. Scully, Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett. 87(22), 220601 (2001)

    ADS  Article  Google Scholar 

  20. Marian Scully, O., Zubairy, M., Suhail, Agarwal, Girish, S, and Walther and. , Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

Download references

Acknowledgements

This project was sponsored by the National Natural Science Foundation of China (Grant Nos. 21773131, 12074206) and the K.C. Wong Magna Foundation in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Xian-Ting Liang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 195 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, XT., Cheng, J., Zhang, WZ. et al. Work and heat in quantum CNOT gate operations. Eur. Phys. J. D 75, 265 (2021). https://doi.org/10.1140/epjd/s10053-021-00270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00270-w