Skip to main content
Log in

Properties of quantum coherence and correlations in quasi-entangled coherent states

  • Reply to Comment - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the validity of quantum Fisher information (QFI) as a helpful coherence quantifier by drawing a comparison with first-order coherence (FOC) and some other relevant quantifiers to study the coherence and correlations in the quasi-Werner entangled coherent states (quasi-WECS). We identify QFI as a more useful coherence quantifier as it quantifies coherences of individual subsystems and correlations between them. On the other hand, FOC identifies coherences present in the individual subsystems only. Our results show that all of these coherence quantifiers follow the same behavior toward their maximum (or minimum) values for experimentally achievable values of the mean photon number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is totally theoretical and no experimental data is available.].

References

  1. F.F. Fanchini, D.D.O.S. Pinto, G. Adesso (eds.), Lectures on General Quantum Correlations and Their Applications (Springer, Berlin, 2017), pp. 159–179

    Book  Google Scholar 

  2. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(3), 1655 (2012)

    Article  ADS  Google Scholar 

  3. J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407 (2016)

    Article  ADS  Google Scholar 

  4. K.C. Tan, H. Kwon, C.Y. Park, H. Jeong, Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94(2), 022329 (2016)

    Article  ADS  Google Scholar 

  5. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  6. S. Pirandola, Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  7. S. Muralidharan, P.K. Panigrahi, Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  8. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. J. Yin, Y.H. Li, S.K. Liao, M. Yang, Y. Cao, L. Zhang, J.W. Pan, Entanglement-based secure quantum cryptography over 1,120 kilometers. Nature 582(7813), 501–505 (2020)

    Article  ADS  Google Scholar 

  10. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Modern Phys. 74(1), 145 (2002)

    Article  MATH  ADS  Google Scholar 

  11. K. Tsurumoto, R. Kuroiwa, H. Kano, Y. Sekiguchi, H. Kosaka, Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys. 2(1), 1–6 (2019)

    Article  Google Scholar 

  12. D. Llewellyn, Y. Ding, I.I. Faruque, S. Paesani, D. Bacco, R. Santagati, M.G. Thompson, Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16(2), 148–153 (2020)

    Article  Google Scholar 

  13. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S.L. Braunstein, Advances in quantum teleportation. Nat. Photonics 9(8), 641–652 (2015)

    Article  ADS  Google Scholar 

  14. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80(5), 1121 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  MATH  ADS  Google Scholar 

  16. S. Langenfeld, S. Welte, L. Hartung, S. Daiss, P. Thomas, O. Morin, G. Rempe, Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126(13), 130502 (2021)

    Article  ADS  Google Scholar 

  17. X.M. Hu, C. Zhang, B.H. Liu, Y. Cai, X.J. Ye, Y. Guo, G.C. Guo, Experimental High-Dimensional Quantum Teleportation. Phys. Rev. Lett. 125(23), 230501 (2020)

    Article  ADS  Google Scholar 

  18. B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F. James, A. Gilchrist, A.G. White, Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99(25), 250505 (2007)

  19. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84(3), 042109 (2011)

    Article  ADS  Google Scholar 

  21. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  MATH  ADS  Google Scholar 

  22. Vedral, V. (2017). Foundations of quantum discord. In Lectures on General Quantum Correlations and their Applications (pp. 3-7). Springer, Cham

  23. V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83(3), 032323 (2011)

    Article  ADS  Google Scholar 

  24. B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, P. Walther, Quantum discord as resource for remote state preparation. Nat. Phys. 8(7), 666–670 (2012)

    Article  Google Scholar 

  25. G.L. Giorgi, Quantum discord and remote state preparation. Phys. Rev. A 88(2), 022315 (2013)

    Article  ADS  Google Scholar 

  26. K. Modi, A pedagogical overview of quantum discord. Open Syst. Inf. Dyn. 21(01–02), 1440006 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sone, Q. Zhuang, C. Li, Y.X. Liu, P. Cappellaro, Nonclassical correlations for quantum metrology in thermal equilibrium. Phys. Rev. A 99(4), 052318 (2019)

    Article  ADS  Google Scholar 

  28. N. Li, S. Luo, Entanglement detection via quantum Fisher information. Phys. Rev. A 88(1), 014301 (2013)

    Article  ADS  Google Scholar 

  29. S.L. Luo, Quantum versus classical uncertainty. Theor. Math. Phys. 143(2), 681–688 (2005)

    Article  MATH  Google Scholar 

  30. S. Luo, Y. Zhang, Quantifying no classicality via Wigner-Yanase skew information. Phys. Rev. A 100(3), 032116 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  31. Z. Chen, Wigner-Yanase skew information as tests for quantum entanglement. Phys. Rev. A 71(4), 052302 (2005)

    Article  ADS  Google Scholar 

  32. W.K. Wootters, Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  33. J. Svozilík, A. Vallés, J. Peřina, J.P. Torres, Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115(10), 220501 (2015)

    Article  ADS  Google Scholar 

  34. C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, T. Byrnes, Quantum coherence of the Heisenberg spin models with Dzyaloshinsky–Moriya interactions. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  35. T. Werlang, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transition. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  36. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105(7), 095702 (2010)

    Article  ADS  Google Scholar 

  37. J. Maziero, H.C. Guzman, L.C. Céleri, M.S. Sarandy, R.M. Serra, Quantum and classical thermal correlations in the XY spin-1 2 chain. Phys. Rev. A 82(1), 012106 (2010)

    Article  ADS  Google Scholar 

  38. D.Z. Rossatto, T. Werlang, E.I. Duzzioni, C.J. Villas-Boas, Nonclassical behavior of an intense cavity field revealed by quantum discord. Phys. Rev. Lett. 107(15), 153601 (2011)

    Article  ADS  Google Scholar 

  39. M.R. Pourkarimi, S. Haddadi, Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under decohering environments. Laser Phys. Lett. 17(2), 025206 (2020)

    Article  ADS  Google Scholar 

  40. F.F. Fanchini, L.K. Castelano, A.O. Caldeira, Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys. 12(7), 073009 (2010)

    Article  ADS  Google Scholar 

  41. M.K. Mishra, A.K. Maurya, H. Prakash, Quantum discord and entanglement of quasi-Werner states based on bipartite entangled coherent states. Int. J. Theor. Phys. 55(5), 2735–2745 (2016)

    Article  MATH  Google Scholar 

  42. S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77(3), 042303 (2008)

    Article  ADS  Google Scholar 

  43. Ali, M., Rau, A. R. P., & Alber, G. (2010). Erratum: Quantum discord for two-qubit X states [Phys. Rev. A. 81, 042105 (2010)]. Phys. Rev. A, 82(5), 069902

  44. B.C. Sanders, Entangled coherent states. Phys. Rev. A 45(7), 6811 (1992)

    Article  ADS  Google Scholar 

  45. X. Wang, Quantum teleportation of entangled coherent states. Phys. Rev. A 64(2), 022302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Joo, W.J. Munro, T.P. Spiller, Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107(6), 083601 (2011)

    Article  ADS  Google Scholar 

  47. S.J. Van Enk, Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. Phys. Rev. Lett. 91(1), 071902 (2003)

    Google Scholar 

  48. Y. Israel, L. Cohen, X.B. Song, J. Joo, H.S. Eisenberg, Y. Silberberg, Entangled coherent states created by mixing squeezed vacuum and coherent light. Optica 6(5), 753–757 (2019)

    Article  ADS  Google Scholar 

  49. T. Liu, Q.P. Su, S.J. Xiong, J.M. Liu, C.P. Yang, F. Nori, Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 6(1), 1–15 (2016)

    Google Scholar 

  50. X.M. Liu, W.W. Cheng, J.M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii–Moriya interaction. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  51. A. Ullah, S.J. Anwar, Characterization of squeezed thermal baths via qubit probe. Eur. Phys. J. B 94(5), 1–9 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Nadeem, M. & Toor, A.H. Properties of quantum coherence and correlations in quasi-entangled coherent states. Eur. Phys. J. D 75, 266 (2021). https://doi.org/10.1140/epjd/s10053-021-00267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00267-5

Navigation