Skip to main content
Log in

Expansion and compression of the momentum distribution of atoms in the field of the counter-propagating frequency-modulated waves

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We simulate the acceleration of atoms by the counter-propagating frequency-modulated (FM) waves. We show that the standard deviation of the velocity of atoms has a non-monotonic time dependence, and explain this phenomenon. The momentum diffusion coefficient of atoms in the field of FM waves is estimated from the analogy with the behaviour of atoms in the field of counter-propagating \(\pi \)-pulses. If the parameters of the atom–field interaction are optimal, the momentum diffusion coefficient linearly depends on light intensity. We obtain our results with the use of the Monte Carlo wave-function method and compare them with the results obtained by the solution of the optical Bloch equations. We compare our results with the behaviour of atoms in the field of the counter-propagating bichromatic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results are presented in the text and figures.]

References

  1. A. Ashkin, Phys. Rev. Lett. 25, 1321 (1970)

    Article  ADS  Google Scholar 

  2. H.J. Metcalf, P. van der Stratten, Laser Cooling and Trapping (Springer–Verlag, New York, Berlin, Heidelberg, 1999). https://www.amazon.com/Science--Math--Harold--Metcalf--Books/s?rh=n%3A75%2Cp_27%3AHarold+Metcalf

  3. A.P. Kazantsev, Zhurn. Éksp. Teor. Fiz. 66, 1599 (1974)

    Google Scholar 

  4. I. Nebenzahl, A. Szöke, Appl. Phys. Letters 25, 327 (1974)

    Article  ADS  Google Scholar 

  5. V.S. Voitsekhovich, M.V. Danileiko, A.M. Negriiko, V.I. Romanenko, L.P. Yatsenko, Zh. Tekh. Fiz 58, 1174 (1988)

    Google Scholar 

  6. V.S. Voitsekhovich, M.V. Danileiko, A.M. Negriiko, V.I. Romanenko, L.P. Yatsenko, Sov. Phys. Tech. Phys. 33, 690 (1988)

    Google Scholar 

  7. V.S. Voĭtsekhovich, M.V. Danileĭko, A.N. Negriĭko, V.I. Romanenko, L.P. Yatsenko, JETP Lett. 49, 161 (1989)

    ADS  Google Scholar 

  8. J. Söding, R. Grimm, Y. Ovchinnikov, P. Bouyer, C. Salomon, Phys. Rev. Lett. 78, 1420 (1997)

    Article  ADS  Google Scholar 

  9. L. Yatsenko, H. Metcalf, Phys. Rev. A 70, 063402 (2004)

    Article  ADS  Google Scholar 

  10. L. Podlecki, R.D. Glover, J. Martin, T. Bastin, J. Opt. Soc. Am. B 35, 127 (2018)

    Article  ADS  Google Scholar 

  11. K. Wenz, I. Kozyryev, R.L. McNally, L. Aldridge, T. Zelevinsky, Phys. Rev. Res. 2, 043377 (2020)

    Article  Google Scholar 

  12. T. Lu, X. Miao, H. Metcalf, Phys. Rev. A 71, 061405 (2005)

    Article  ADS  Google Scholar 

  13. X. Miao, E. Wertz, M.G. Cohen, H. Metcalf, Phys. Rev. A 75, 011402 (2007)

    Article  ADS  Google Scholar 

  14. M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, H. Metcalf, Phys. Rev. A 64, 063411 (2001)

    Article  ADS  Google Scholar 

  15. M. Cashen, O. Rivoire, L. Yatsenko, H. Metcalf, J. Opt. B 4, 75 (2002)

    Article  ADS  Google Scholar 

  16. M. Cashen, H. Metcalf, J. Opt. Soc. Am. B 20, 915 (2003)

    Article  ADS  Google Scholar 

  17. H. Metcalf, Rev. Mod. Phys. 89, 041001 (2017)

    Article  ADS  Google Scholar 

  18. V.I. Romanenko, L.P. Yatsenko, JETP Lett. 86, 756 (2008)

    Article  ADS  Google Scholar 

  19. V.S. Voĭtsekhovich, M.V. Danileĭko, A.N. Negriĭko, V.I. Romanenko, L.P. Yatsenko, Sov. Phys.-JETP 72, 219 (1991)

    ADS  Google Scholar 

  20. V.I. Romanenko, L.P. Yatsenko, Phys. Rev. A 103, 043104 (2021)

    Article  ADS  Google Scholar 

  21. V.G. Minogin, V.S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, New York, 1987)

    Google Scholar 

  22. S.M. Freund, M. Römheld, T. Oka, Phys. Rev. Lett. 35, 1497 (1975)

    Article  ADS  Google Scholar 

  23. E. Kyröla, S. Stenholm, Opt. Commun. 22, 123 (1977)

    Article  ADS  Google Scholar 

  24. E.S. Shuman, J.F. Barry, D. DeMille, Nature 467(7317), 820 (2010)

    Article  ADS  Google Scholar 

  25. V. Zhelyazkova, A. Cournol, T.E. Wall, A. Matsushima, J.J. Hudson, E.A. Hinds, M.R. Tarbutt, B.E. Sauer, Phys. Rev. A 89, 053416 (2014)

    Article  ADS  Google Scholar 

  26. Rong Yang, Bin Tang, XiangYu Han, RSC Adv. 9, 31543 (2019)

    Article  ADS  Google Scholar 

  27. C. Corder, B. Arnold, X. Hua, H. Metcalf, J. Opt. Soc. Am. B 32, B75 (2015)

    Article  Google Scholar 

  28. B.W. Shore, The Theory of Coherent Atomic Excitation, vol. 1 (Wiley, New York, 1990)

    Google Scholar 

  29. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  30. K. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)

    Article  ADS  Google Scholar 

  31. R. Chrétien, Laser cooling of atoms: Monte-Carlo wavefunction simulations, in Master’s thesis Faculté des Sciences Appliquées. (Universitè de Liège Belgium, 2014)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Victor I. Romanenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanenko, V.I., Kornilovska, N.V. Expansion and compression of the momentum distribution of atoms in the field of the counter-propagating frequency-modulated waves. Eur. Phys. J. D 75, 250 (2021). https://doi.org/10.1140/epjd/s10053-021-00262-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00262-w

Navigation