Skip to main content

Advertisement

Log in

Fragmentation of tyrosine by low-energy electron impact

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

New experimental data on the fragmentation of the tyrosine amino acid molecule (\(\hbox {C}_{9} \hbox {H}_{11} \hbox {NO}_{3})\) are presented being related to the formation of the ionized products due to the low-energy electron impact. The resulting fragments have been identified and analyzed using an extensive DFT theory approach. The results allowed the main pathways of the electron-impact tyrosine molecule fragmentation to be suggested. The absolute appearance energies for several fragments have been measured experimentally and calculated theoretically, compared and analyzed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.].

References

  1. M.N. Frey, T.F. Koetzle, M.S. Lehmann, W.C. Hamilton, Precision neutron diffraction structure determination of protein and nucleic acid components. X. A comparison between the crystal and molecular structures of L-tyrosine and L-tyrosine hydrochloride. J. Chem. Phys. 58, 2547 (1973). https://doi.org/10.1063/1.1679537

    Article  ADS  Google Scholar 

  2. H. Kang, T.J. Tolbert, C. Schoneich, Photoinduced tyrosine side chain fragmentation in IgG4-Fc: mechanisms and solvent isotope effects. Mol. Pharmaceutics. 16, 258 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b00979

    Article  Google Scholar 

  3. S. Hermeling, H. Schellekens, C. Maas, M.F. Gebbink, D.J. Crommelin, W. Jiskoot, Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J. Pharm. Sci. 95, 1084 (2006). https://doi.org/10.1002/jps.20599

    Article  Google Scholar 

  4. G.M. Cockrell, M.S. Wolfe, J.L. Wolfe, C. Schoneich, Photoinduced aggregation of a model antibody-drug conjugateá. Mol. Pharmaceutics. 12, 1784 (2015). https://doi.org/10.1021/mp5006799

    Article  Google Scholar 

  5. M. Faraggi, M.R. DeFelippis, M.H. Klapper, Long-range electron transfer between tyrosine and tryptophan in peptides. J. Am. Chem. Soc. 111, 5141 (1989). https://doi.org/10.1021/ja00196a019

    Article  Google Scholar 

  6. S.V. Jovanovic, A. Harriman, M.G. Simic, Electron-transfer reactions of tryptophan and tyrosine derivatives. J. Phys. Chem. 90, 1935 (1986). https://doi.org/10.1021/j100400a039

    Article  Google Scholar 

  7. M. Sjödin, S. Styring, H. Wolpher, Y. Xu, L. Sun, L. Hammarström, Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. J. Am. Chem. Soc. 127, 3855 (2005). https://doi.org/10.1021/ja044395o

    Article  Google Scholar 

  8. N.J. Dibb, S.M. Dilworth, C.D. Mol, Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat. Rev. Cancer 4, 718 (2004). https://doi.org/10.1038/nrc1434

    Article  Google Scholar 

  9. R. Roskoski Jr., Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323 (2007). https://doi.org/10.1016/j.bbrc.2007.02.156

    Article  Google Scholar 

  10. B. Boudaïffa, P. Cloutier, D.D. Hunting, M.A. Huels, S.L. Resonant, Formation of DNA strand breaks by low-energy (3–20 eV) electrons. Science 287(1658), 5458 (2000). https://doi.org/10.1126/science.287.5458.1658

    Article  Google Scholar 

  11. F. Ferreirada Silva, G. Meneses, O. Ingólfsson, P. Limão-Vieira, Side chain effects in reactions of the potassium-tyrosine charge transfer complex. Chem. Phys. Let. 662, 19 (2016). https://doi.org/10.1016/j.cplett.2016.08.004

    Article  ADS  Google Scholar 

  12. D.L. Tabb, L.L. Smith, L.A. Breci, V.H. Wysocki, D. Lin, J.R. Yates, Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal. Chem. 75, 1155 (2003). https://doi.org/10.1021/ac026122m

    Article  Google Scholar 

  13. V.S. Vukstich, A.I. Imre, A.V. Snegursky, Modernization of the MI1201 mass spectrometer for studying the electron-molecule interaction processes at low electron energies. Instr. Exper. Tech. 54, 207 (2011). https://doi.org/10.1134/S0020441211020205

    Article  Google Scholar 

  14. J. Tamulienė, L. Romanova, V. Vukstich, A. Papp, L. Baliulytė, A. Snegursky, The impact of low-energy ionizing radiation on glutamine. Int. J. Mass Spectr. 444, 116185 (2019). https://doi.org/10.1016/j.ijms.2019.116185

    Article  Google Scholar 

  15. J. Tamulienė, L.G. Romanova, V.S. Vukstich, A.V. Papp, S. Shkurin, A.V. Snegursky, Electron-impact-induced asparagine molecule fragmentation. Eur. Phys. J. D. 68, 118 (2014). https://doi.org/10.1140/epjd/e2014-50069-7

    Article  ADS  Google Scholar 

  16. J. Tamulienė, L.G. Romanova, V.S. Vukstich, A.V. Papp, L. Baliulytė, A.V. Snegursky, On the influence of low-energy ionizing radiation on the amino acid molecule: proline. Eur. Phys. J. D. 70, 143 (2016). https://doi.org/10.1140/epjd/e2016-70171-0

    Article  ADS  Google Scholar 

  17. Y. Inokuchi, Y. Kobayashi, T. Ito, T. Ebata, Conformation of l-tyrosine studied by fluorescence-detected UV–UV and IR-UV double-resonance spectroscopy. J. Phys. Chem. 111, 3209 (2007). https://doi.org/10.1021/jp070163a

    Article  Google Scholar 

  18. A.D. Becke, Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)

  20. National Institute of Standards (NIST), Standard Reference Database: Chemistry Webbook. http://webbook.nistgov

  21. A. Abo-Riziq, L. Grace, B. Crews, M.P. Callahan, T. van Mourik, M.S. de Vries, Conformational structure of tyrosine, tyrosyl-glycine, and tyrosyl-glycyl-glycine by double resonance spectroscopy. J. Phys. Chem. A. 115, 6077 (2011). https://doi.org/10.1021/jp110601w

    Article  Google Scholar 

  22. A.V. Snegursky, J. Tamulienė, L.G. Romanova, V.S. Vukstich, Amino Acid Molecules Fragmentation by Low-Energy Electrons (Nova Publishers, New York, 2014), p. 111

    Google Scholar 

  23. A.C. Hopkinson, K.W.M. Siu, Peptide radical cation, in Principle of Mass Spectrometry Applied to Biomolecules. ed. by J. Laskin, C. Liftshitz (Wiley, Hoboken, 2006), pp. 301–335

    Chapter  Google Scholar 

  24. J. Tamulienė, L.G. Romanova, V.S. Vukstich, A.V. Papp, A.V. Snegursky, Electron-impact-induced tryptophan molecule fragmentation. Eur. Phys. J. D 69, 21 (2015). https://doi.org/10.1140/epjd/e2014-50551-2

    Article  ADS  Google Scholar 

  25. O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, Valence photoionization and photofragmentation of aromatic amino acids. Int. J. Int. Between Chem. and Phys. 106, 1143 (2008). https://doi.org/10.1080/00268970801974875

    Article  Google Scholar 

  26. D. Dehareng, G. Dive, Vertical ionization energies of \(\alpha \)-l-amino acids as a function of their conformation: an ab initio study. Int. J. Mol. Sci. 5, 301 (2004). https://doi.org/10.3390/i5110301

    Article  Google Scholar 

  27. G. Tomasello, M. Wohlgemuth, J. Petersen, R. Mitric, Photodynamics of free and solvated tyrosine. J. Phys. Chem. B. 116, 8762 (2012). https://doi.org/10.1021/jp302179m

    Article  Google Scholar 

  28. M. Zhang, Zh. Huang, Z. Lin, Systematic ab initio studies of the conformers and conformational distribution of gas-phase tyrosine. J. Chem. Phys. 122, 134313 (2005). https://doi.org/10.1063/1.1869471

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the CA18212—Molecular Dynamics in the GAS phase COST Action and the Ukrainian National Research Fund (Grant No. 2020.01/0009 Influence of ionizing radiation on the structure of amino acid molecules) for financial support. We appreciate greatly the high-performance computing resources provided by the Information Technology Open Access Centre of Vilnius University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to this paper in the following proportions: Jelena Tamuliene (theoretical calculations, discussion of results)—40%, Liudmila Romanova (discussion of results)—20%, Vasyl Vukstich (experimental measurements)—20%, Alexander Snegursky (discussion of results)—20%.

Corresponding author

Correspondence to Jelena Tamuliene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamuliene, J., Romanova, L., Vukstich, V. et al. Fragmentation of tyrosine by low-energy electron impact. Eur. Phys. J. D 75, 246 (2021). https://doi.org/10.1140/epjd/s10053-021-00258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00258-6

Navigation