Skip to main content
Log in

Electron-capture cross sections in collisions of \({\mathrm{He}}^{+}\) with several molecules

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Single-electron capture in ground state from several biologically relevant molecules by \({\mathrm{He}}^{+}\) has been studied theoretically by a three-body version of the distorted-wave (DW) approximation both in prior and post forms in the energy range from 60 to 8000 keV. Due to multi-electron targets, this approximation is developed within the framework of independent electron model taking into account the molecular character of the target and the simple Bragg’s additivity rule. The present formalism satisfies the proper boundary conditions. The interaction of the active electron with the incoming projectile ion has been approximated by a model potential containing a long-range part and a short-range part. The quantum-mechanical post and prior forms of the transition amplitude for charge exchange between \({\mathrm{He}}^{+}\) and molecules are derived in terms of one-dimensional real integral which can be computed numerically. A detailed analysis on the contributions to the total cross sections (TCSs) coming from different molecular orbitals has also been discussed. Moreover, the contribution of short-range potential to the TCS in prior form is analysed. The calculated cross sections are compared with the available experimental and theoretical results in the wide range of impact energies. Overall, numerical results for the TCS show good agreement with the available experimental findings particularly at intermediate energy region. From this investigation, we find that the additivity rule is to be limited to relatively high energies where the molecular character is insignificant. Finally, the dependence of TCS on the number of valance electrons of different target molecules is analysed at different collision energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Our present theoretical data used in this work are available from the Authors upon reasonable request.]

References

  1. A. Brahme, Int. J. Radiat. Oncol. Biol. Phys. 58, 603 (2004)

    Article  Google Scholar 

  2. B.C. Garnett, Chem. Rev. 105, 355 (2005)

    Article  Google Scholar 

  3. D. Belkic, Theory of Heavy Ion Collision Physics in Hardron Therapy, Advances in Quantum Chemistry, vol. 65 (Academy Press, Cambridge, 2013)

    Google Scholar 

  4. V. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005)

    Article  ADS  Google Scholar 

  5. U. Linz, Ion Beam Therapy (Springer, Berlin, Heidelberg, 2012)

    Book  Google Scholar 

  6. S. Bhattacharjee, S. Biswas, C. Bagdia, M. Roychowdhury, S. Nandi, D. Misra, J.M. Monti, C.A. Tachino, R.D. Rivarola, C. Champion, L.C. Trivedi, J. Phys. B 49, 065202 (2016)

    Article  ADS  Google Scholar 

  7. C.A. Tachino, J.M. Monti, O.A. Fojón, C. Champion, R.D. Rivarola, J. Phys. B At. Mol. Opt. Phys. 47, 035203 (2014)

    Article  ADS  Google Scholar 

  8. J.M. Monti, C.A. Tachino, J. Hanssen, O.A. Fojón, M.E. Galassi, C. Champion, R.D. Rivarola, Appl. Radiat. Isot. 83, 105 (2014)

    Article  Google Scholar 

  9. S. Nandi, S. Biswas, A. Khan, J.M. Monti, C.A. Tachino, R.D. Rivarola, D. Misra, L.C. Tribedi, Phys. Rev. A 87, 052710 (2013)

    Article  ADS  Google Scholar 

  10. L.F. Errea, C. Illescas, L. Méndez, I. Rabadán, Phys. Rev. A 87, 032709 (2013)

    Article  ADS  Google Scholar 

  11. A. Jorge, M. Horbatsch, C. Illescas, T. Kirchner, Phys. Rev. A 99, 062701 (2013)

    Article  ADS  Google Scholar 

  12. L.F. Errea, C. Illescas, L. Méndez, I. Rabadan, J. Suárez, Chem. Phys. 462, 17 (2015)

    Article  Google Scholar 

  13. H. Luna, W. Wolff, E.C. Montenegro, A.C. Tavares, H.J. Lüdde, M. Horbatsch, T. Kirchner, Phys. Rev. A 93, 052705 (2016)

    Article  ADS  Google Scholar 

  14. M.E. Galassi, P.N. Abufager, P.D. Fainstein, R.D. Rivarola, Phys. Rev. A 81, 062713 (2010)

    Article  ADS  Google Scholar 

  15. C. Champion, P.F. Weck, H. Lekader, M.E. Galassi, O.A. Fojón, P. Abufager, R.D. Rivarola, J. Hanssen, Phys. Med. Biol. 57, 3039 (2012)

    Article  Google Scholar 

  16. L. Gulyas, S. Egri, H. Ghavaminia, A. Igarashi, Phys. Rev. A 93, 032704 (2016)

    Article  ADS  Google Scholar 

  17. M.A. Quinto, J.M. Monti, P.D. Montenegro, O.A. Fojón, C. Champion, R.D. Rivarola, Eur. Phys. J. B 71, 35 (2017)

    Google Scholar 

  18. L.M. Rottmann, R. Bruch, P. Neill, C. Drexler, R.D. DuBois, L.H. Toburen, Phys. Rev. A 46, 3883 (1992)

    Article  ADS  Google Scholar 

  19. M.E. Rudd, A. Itoh, T.V. Goffe, Phys. Rev. A 32, 2499 (1985)

    Article  ADS  Google Scholar 

  20. M.E. Rudd, T.V. Goffe, A. Itoh, R.D. DuBois, Phys. Rev. A 32, 829 (1985)

    Article  ADS  Google Scholar 

  21. M. Sataka, A. Yagishita, Y. Nakai, J. Phys. B At. Mol. Opt. Phys. 23, 1225 (1990)

    Article  ADS  Google Scholar 

  22. J.B. Greenwood, I.D. Williams, S.J. Smith, A. Chutjian, Phys. Rev. A 63, 062707 (2001)

    Article  ADS  Google Scholar 

  23. M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985)

    Article  ADS  Google Scholar 

  24. P.M.Y. Garcia, G.M. Sigaud, H. Luna, A.C.F. Santos, E.C. Montenegro, M.B. Shah, Phys. Rev. A 77, 052708 (2008)

    Article  ADS  Google Scholar 

  25. M. Murakami, T. Kirchner, M. Horbatsch, H.J. Lüdde, Phys. Rev. A 86, 022719 (2012)

    Article  ADS  Google Scholar 

  26. T. Liamsuwan, H. Nikjoo, Phys. Med. Biol. 58, 641 (2013)

    Article  Google Scholar 

  27. A.C.F. Santos, W. Wolff, M.M. SantAnna, G.M. Sigaud, R.D. DuBois, J. Phys. B At. Mol. Opt. Phys. 46, 075202 (2013)

    Article  ADS  Google Scholar 

  28. G.M. Sigaud, J. Phys. B At. Mol. Opt. Phys. 41, 015205 (2008)

    Article  ADS  Google Scholar 

  29. G.M. Sigaud, J. Phys. B At. Mol. Opt. Phys. 44, 225201 (2011)

    Article  ADS  Google Scholar 

  30. H. Knudsen, H.K. Haugen, P. Hvelplund, Phys. Rev. A 23, 597 (1981)

    Article  ADS  Google Scholar 

  31. T. Kirchner, M. Murakami, M. Horbatsch, H.J. Lüdde, J. Phys. Conf. Ser. 388, 012038 (2012)

    Article  Google Scholar 

  32. H.J. Lüdde, T. Spranger, M. Horbatsch, T. Kirchner, Phys. Rev. A 80, 060702(R) (2009)

    Article  ADS  Google Scholar 

  33. H.J. Lüdde, A. Jorge, M. Horbatsch, T. Kirchner, Atoms 8, 59 (2020)

    Article  ADS  Google Scholar 

  34. C. Illescas, M.A. Lombana, L. Méndez, I. Rabadan, J. Suárez, Phys. Chem. Chem. 22, 19573 (2020)

    Article  Google Scholar 

  35. M. Das, M. Purkait, C.R. Mandal, Phys. Rev. A 57, 3573 (1998)

    Article  ADS  Google Scholar 

  36. M. Das, M. Purkait, C.R. Mandal, J. Phys. B At. Mol. Opt. Phys. 31, 4387 (1998)

    Article  ADS  Google Scholar 

  37. S. Sounda, A. Dhara, M. Purkait, C.R. Mandal, Eur. Phys. J. D 38, 257 (2006)

    Article  ADS  Google Scholar 

  38. R.D. Rivarola, R.D. Piacentini, A. Salin, Dz. Belkic, J. Phys. B At. Mol. Phys. 13, 2601 (1980)

    Article  ADS  Google Scholar 

  39. S.E. Corchs, R.D. Rivarola, J.H. McGuire, Phys. Rev. A 47, 3937 (1993)

    Article  ADS  Google Scholar 

  40. Dz. Belkic, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979)

    Article  ADS  Google Scholar 

  41. M.A. Quinto, P.R. Montenegro, J.M. Monti, O.A. Fojón, R.D. Rivarola, J. Phys. B At. Mol. Opt. Phys. 51, 165201 (2018)

    Article  ADS  Google Scholar 

  42. C. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  43. K. Sigbahn, C. Nordling, G. Johansson, H. Hedman, P.F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne, Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amesterdam, 1969)

    Google Scholar 

  44. I. Mancev, N. Milojevic, Phys. Rev. A 81, 022710 (2010)

    Article  ADS  Google Scholar 

  45. R.R. Lewis, Phys. Rev. 102, 537 (1956)

    Article  ADS  Google Scholar 

  46. H. Ghavaminia, L. Gulyas, L. Sarkadi, E. Bene, S. Demes, Z. Juhasz, Eur. Phys. J. D 71, 217 (2017)

    Article  ADS  Google Scholar 

  47. I.N. Levine, Quantum Chemistry, 7th edn. (Pearson, London, 2014)

    Google Scholar 

  48. A.E.S. Green, D.L. Sellin, A.S. Zachor, Phys. Rev. 184, 1 (1969)

  49. J. Pople, D. Santry, G. Segal, J. Chem. Phys. 43, S129 (1965)

    Article  ADS  Google Scholar 

  50. J. Pople, G. Segal, J. Chem. Phys. 43, S136 (1965)

  51. J. Pople, G. Segal, J. Chem. Phys. 44, 3289 (1966)

    Article  ADS  Google Scholar 

  52. J.K.M. Eichler, A. Tsuji, T. Ishihara, Phys. Rev. A 23, 2833 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks to Prof. C. R. Mandal for helpful discussion and a critical review of the manuscript. The authors gratefully acknowledge the financial support from the Science and Engineering Research Board (SERB), New Delhi, India, through Sanction No. CRG/2018/001344.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the theoretical research work and the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. Purkait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, D., Purkait, K., Halder, S. et al. Electron-capture cross sections in collisions of \({\mathrm{He}}^{+}\) with several molecules. Eur. Phys. J. D 75, 245 (2021). https://doi.org/10.1140/epjd/s10053-021-00250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00250-0

Navigation