Skip to main content

Advertisement

Log in

Dissociative attachment of low-energy electrons to acetonitrile

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We experimentally probed the low-energy electron-induced dissociation of acetonitrile and acetonitrile-\(\hbox {d}_3\) and performed density functional theory calculations to support the experimental results. The previous studies on electron attachment to acetonitrile presented a number of contradictory findings, which we aimed to resolve in the present study. We observed the formation of \(\hbox {H}^-\), \(\hbox {CH}_2^-\), \(\hbox {CH}_3^-\), \(\hbox {CN}^-\), \(\hbox {CCN}^-\), \(\hbox {CHCN}^-\) and \(\hbox {CH}_2 \hbox {CN}^-\) anions and the corresponding deuterated fragments for acetonitrile-\(\hbox {d}_3\) by dissociative electron attachment, and measured ion yields curves of each fragment. We saw no evidence for associative electron attachment to form the parent ion in these measurements. We also have measured the kinetic energy and angular distribution of selected fragments using a velocity map imaging (VMI) spectrometer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data will be provided at reasonable request by the authors.]

References

  1. R.J. Habing, G.H. MacDonald, Astron. Astrophys. 252, 705 (1991)

    ADS  Google Scholar 

  2. C. Watson, E. Churchwell, V. Pankonin, J.H. Bieging, Astrophys. J. 577, 260 (2002)

    ADS  Google Scholar 

  3. A. Coustenis, B. Schmitt, R. Khanna, F. Trotta, Planet. Space Sci. 47, 1305 (1999)

    ADS  Google Scholar 

  4. V. Vuitton, P. Lavvas, R. Yelle, M. Galand, A. Wellbrock, G. Lewis, A. Coates, J.E. Wahlund, Planet. Space Sci. 57, 1558 (2009)

    ADS  Google Scholar 

  5. A. Brack, The Molecular Origins of Life: Assembling Pieces of the Puzzle (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  6. T.P.R. Kumar, P. Nag, M. Rankovic, R. Curik, A. Knížek, S. Civiš, M. Ferus, J. Trnka, K. Houfek, M. Cizek et al., Phys. Rev. A 102, 062822 (2020)

    ADS  Google Scholar 

  7. P. Nag, M. Polášek, J. Fedor, Phys. Rev. A 99, 052705 (2019)

    ADS  Google Scholar 

  8. P. Nag, D. Nandi, Phys. Chem. Chem. Phys. 17, 7130 (2015)

    Google Scholar 

  9. Y. Kawarai, T. Weber, Y. Azuma, C. Winstead, V. McKoy, A. Belkacem, D. Slaughter, J. Phys. Chem. Lett. 5, 3854 (2014)

    Google Scholar 

  10. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    ADS  Google Scholar 

  11. M. Mahmoodi-Darian, S. Tian, S. Denifl, S. Matejcik, T. Märk, P. Scheier, Int. J. Mass Spectrom. 293, 51 (2010)

    Google Scholar 

  12. A.P. Hitchcock, M. Tronc, A. Modelli, J. Phys. Chem. 93, 3068 (1989). https://doi.org/10.1021/j100345a039

    Article  Google Scholar 

  13. P.D. Burrow, A.E. Howard, A.R. Johnston, K.D. Jordan, J. Phys. Chem. 96, 7570 (1992). https://doi.org/10.1021/j100198a017

    Article  Google Scholar 

  14. F. Edard, A.P. Hitchcock, M. Tronc, J. Phys. Chem. 94, 2768 (1990). https://doi.org/10.1021/j100370a010

    Article  Google Scholar 

  15. M. Gochel-Dupuis, J. Delwiche, M.J. Hubin-Franskin, J.E. Collin, F. Edard, M. Tronc, J. Am. Chem. Soc. 112, 5425 (1990). https://doi.org/10.1021/ja00170a005

    Article  Google Scholar 

  16. M.M. Fujimoto, E.V.R. de Lima, J. Tennyson, Eur. Phys. J. D 69, 153 (2015)

    ADS  Google Scholar 

  17. G.L. Gutsev, A.L. Sobolewski, L. Adamowicz, Chem. Phys. 196, 1 (1995)

    Google Scholar 

  18. P.R. Brooks, P.W. Harland, S.A. Harris, T. Kennair, C. Redden, J.F. Tate, J. Am. Chem. Soc. 129, 15572 (2007)

    Google Scholar 

  19. R.J. Warmack, J.A.D. Stockdale, H.C. Schweinler, J. Chem. Phys. 72, 5930 (1980). https://doi.org/10.1063/1.439091

    Article  ADS  Google Scholar 

  20. J.A. Stockdale, F.J. Davis, R.N. Compton, C.E. Klots, J. Chem. Phys. 60, 4279 (1974). https://doi.org/10.1063/1.1680900

    Article  ADS  Google Scholar 

  21. M. Heni, E. Illenberger, Int. J. Mass Spectrom. Ion Process. 73, 127 (1986)

    ADS  Google Scholar 

  22. W. Sailer, A. Pelc, P. Limão-Vieira, N. Mason, J. Limtrakul, P. Scheier, M. Probst, T. Märk, Chem. Phys. Lett. 381, 216 (2003)

    ADS  Google Scholar 

  23. I. Ipolyi, W. Michaelis, P. Swiderek, Phys. Chem. Chem. Phys. 9, 180 (2007)

    Google Scholar 

  24. A.D. Bass, J.H. Bredehöft, E. Böhler, L. Sanche, P. Swiderek, Eur. Phys. J. D 66, 53 (2012)

    ADS  Google Scholar 

  25. T. Sugiura, A. Arakawa, Proceedings of the international conference on mass. Spectroscopy 72, 848 (1970)

    Google Scholar 

  26. C.E. Klots, J. Chem. Phys. 62, 741 (1975)

    ADS  Google Scholar 

  27. R. Hashemi, E. Illenberger, J. Phys. Chem. 95, 6402 (1991). https://doi.org/10.1021/j100170a002

    Article  Google Scholar 

  28. S. Tsuda, A. Yokohata, T. Umaba, Bull. Chem. Soc. Jpn. 43, 3383 (1970)

    Google Scholar 

  29. H. Li, X.F. Gao, X. Meng, S.X. Tian, J. Phys. Chem. A 123, 9089 (2019)

    Google Scholar 

  30. R. Janečková, D. Kubala, O. May, J. Fedor, M. Allan, Phys. Rev. Lett. 111, 213201 (2013)

    ADS  Google Scholar 

  31. M. Zawadzki, T.F.M. Luxford, J. Kočišek, J. Phys. Chem. A 124, 9427 (2020)

    Google Scholar 

  32. M. Stepanović, Y. Pariat, M. Allan, J. Chem. Phys. 110, 11376 (1999). https://doi.org/10.1063/1.479078

    Article  ADS  Google Scholar 

  33. J. Langer, M. Zawadzki, M. Fárník, J. Pinkas, J. Fedor, J. Kočišek, Eur. Phys. J. D 72, 112 (2018)

    ADS  Google Scholar 

  34. M. Fárník, J. Fedor, J. Koçišek, J. Lengyel, E. Pluhařová, V. Poterya, A. Pysanenko, Phys. Chem. Chem. Phys. 23, 3195 (2021)

    Google Scholar 

  35. M. Fárník, J. Lengyel, Mass Spectrom. Rev. 37, 630 (2018)

    ADS  Google Scholar 

  36. M. Zawadzki, Eur. Phys. J. D 72, 12 (2018). https://doi.org/10.1140/epjd/e2017-80540-8

  37. M. Ranković, J. Chalabala, M. Zawadzki, J. Kočišek, P. Slavíček, J. Fedor, Phys. Chem. Chem. Phys. 21, 16451 (2019)

    Google Scholar 

  38. J. Kočišek, K. Grygoryeva, J. Lengyel, M. Fárník, J. Fedor, Eur. Phys. J. D 70, 98 (2016)

    ADS  Google Scholar 

  39. M. Ranković, T.P.R. Kumar, P. Nag, J. Kočišek, J. Fedor, J. Chem. Phys. 152, 244304 (2020)

    ADS  Google Scholar 

  40. M. Allan, J. Electron Spectrosc. Relat. Phenom. 48, 219 (1989)

    Google Scholar 

  41. J. Fedor, O. May, M. Allan, Phys. Rev. A 78, 032701 (2008)

    ADS  Google Scholar 

  42. A. Moradmand, D.S. Slaughter, A.L. Landers, M. Fogle, Phys. Rev. A 88, 022711 (2013)

    ADS  Google Scholar 

  43. R. Dressler, M. Allan, Chem. Phys. 92, 449 (1985)

    Google Scholar 

  44. P. Nag, D. Nandi, Phys. Rev. A 91, 052705 (2015)

    ADS  Google Scholar 

  45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji et al., Gaussian-16 Revision C.01 (Gaussian Inc, Wallingford, 2016)

    Google Scholar 

  46. R. Janečková, O. May, J. Fedor, Phys. Rev. A 86, 052702 (2012)

    ADS  Google Scholar 

  47. E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947)

    ADS  Google Scholar 

  48. W. Garrett, Chem. Phys. Lett. 5, 393 (1970)

    ADS  Google Scholar 

  49. W.R. Garrett, J. Chem. Phys. 69, 2621 (1978)

    ADS  Google Scholar 

  50. P. Alston Steiner, W. Gordy, J. Mol. Spectrosc. 21, 291 (1966)

    ADS  Google Scholar 

  51. C. Desfrançois, H. Abdoul-Carime, C. Adjouri, N. Khelifa, J.P. Schermann, Europhys. Lett. (EPL) 26, 25 (1994)

    ADS  Google Scholar 

  52. E. Illenberger, J. Momigny, Gaseous Molecular Ions: An Introduction to Elementary Processes Induced by Ionization (Steinkopff, Heidelberg, 1992)

    Google Scholar 

  53. D. Nandi, V.S. Prabhudesai, E. Krishnakumar, A. Chatterjee, Rev. Sci. Instrum. 76, 053107 (8) (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr Juraj Fedor for valuable suggestions and fruitful discussion throughout the entire stage of the present work. L.T. acknowledges the support from COST (European Cooperation in Science and Technology) Action CA18212 - Molecular Dynamics in the GAS phase (MD-GAS). The work has been supported by the Czech Science Foundation Project Nr. 20-11460S.

Author information

Authors and Affiliations

Authors

Contributions

TL measured performed the experiments with TEM-QMS setup and performed the quantum chemical calculations. JK and LT performed the experiments using CLUB setup. PN performed the experiments with the DEA-VMI setup. TL and PN prepared the manuscript. All the authors contributed to the final version of the manuscript and approved it.

Corresponding author

Correspondence to Pamir Nag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luxford, T.F.M., Kočišek, J., Tiefenthaler, L. et al. Dissociative attachment of low-energy electrons to acetonitrile. Eur. Phys. J. D 75, 230 (2021). https://doi.org/10.1140/epjd/s10053-021-00246-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00246-w

Navigation