Skip to main content
Log in

High-precision measurement of tiny difference frequency via weak value amplification

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It is of great significance to measure tiny difference frequency precisely, which has important application value for Doppler velocity measurement. However, the systematic error caused by non-ideal detectors during measurements limits the improvement of precision, and the systematic error cannot be reduced by increasing the number of measurements. Aiming at the systematic error, the weak value amplification scheme can reduce it effectively. This paper proposes a precise measurement scheme for tiny difference frequency between Fock state photons based on weak value amplification technology. Meanwhile, we use the theory of error to discuss the measurement precision of this scheme, and finish simulation research on the theoretical basis. Simulation results show that weak value amplification can reduce the systematic error of the measurement system and improve the response sensitivity of non-ideal detectors. By adjusting the transmission and reflection coefficients of the beam splitter in our scheme, the response sensitivity of difference frequency can improve 1000 times compared with that of classical schemes. When the systematic error of the measurement system is the main source of error in the measurement process, the weak value amplification scheme can obtain higher precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  2. J. Dressel, M. Malik, F.M. Miatto, A.N. Jordan, R.W. Boyd, Rev. Mod. Phys. 86, 307 (2013)

    Article  ADS  Google Scholar 

  3. J.P. Tomes, L.J. Salazar, Sci. Rep. 6, 19702 (2016)

    Article  ADS  Google Scholar 

  4. N. Brunner, C. Simon, Phys. Rev. Lett. 105, 010405 (2010)

    Article  ADS  Google Scholar 

  5. Y. Aharonov, A. Botero, Phys. Rev. A 72, 052111 (2005)

    Article  ADS  Google Scholar 

  6. J. Calsamiglia, B. Gendra, R. Munoz-Tapia, E. Bagan, New J. Phys. 18, 103049 (2016)

    Article  ADS  Google Scholar 

  7. J.M. Rincón, C.A. Mullarkey, G.I. Viza, M.R. Julián, W.T. Liu, J.C. Howell, Opt. Lett 42, 2479 (2017)

    Article  ADS  Google Scholar 

  8. M. Pfeifer, P. Fischer, Opt. Express 19, 16508 (2011)

    Article  ADS  Google Scholar 

  9. X. Zhou, Z. Xiao, H. Luo, S. Wen, Phys. Rev. A 85, 043809 (2011)

    Article  ADS  Google Scholar 

  10. P.B. Dixon, D.J. Starling, A.N. Jordan, J.C. Howell, Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  11. J.M. Hogan, J. Hammer, S.-W. Chiow, S. Dickerson, D.M.S. Johnson, T. Kovachy, A. Sugarbaker, M.A. Kasevich, Opt. Lett. 36, 1698 (2011)

    Article  ADS  Google Scholar 

  12. M.D. Turner, C.A. Hagedorn, S. Schlanvninger, J.H. Gundlach, Opt. Lett. 36, 1479 (2011)

    Article  ADS  Google Scholar 

  13. G. Strubi, C. Bruder, Phys. Rev. Lett. 110, 083605 (2013)

    Article  ADS  Google Scholar 

  14. X.Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.F. Li, G.C. Guo, Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  15. G. Jayaswal, G. Mistura, M. Merano, Opt. Lett. 39, 6257 (2014)

    Article  ADS  Google Scholar 

  16. P. Egan, J.A. Stone, Opt. Lett. 37, 4991 (2012)

    Article  ADS  Google Scholar 

  17. O. Hosten, P. Kwiat, Science 319, 787 (2008)

    Article  ADS  Google Scholar 

  18. Y. Gorodetski, K.Y. Bliokh, B. Stein, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 109, 013901013901 (2012)

    Article  ADS  Google Scholar 

  19. A. Feizpour, X. Xing, A.M. Steinberg, Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  20. G.I. Viza, J. Martínez-Rincón, G.A. Howland, H. Frostig, I. Shomroni, B. Dayan, J.C. Howell, Opt. Lett. 38, 2949–2952 (2013)

    Article  ADS  Google Scholar 

  21. D.J. Starling, P.B. Dixon, A.N. Jordan, J.C. Howell, Phys. Rev. A 82, 063822 (2010)

    Article  ADS  Google Scholar 

  22. C.M. Caves, Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (62075049) and (61701139).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to the paper.

Corresponding authors

Correspondence to Zijing Zhang or Yuan Zhao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Z. & Zhao, Y. High-precision measurement of tiny difference frequency via weak value amplification. Eur. Phys. J. D 75, 238 (2021). https://doi.org/10.1140/epjd/s10053-021-00245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00245-x

Navigation