Skip to main content
Log in

Scattering of e\(^\pm \) off silver atom over the energy range 1 eV–1 MeV

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The present work reports the calculations of the differential cross sections (DCSs) along-with the critical minima (CM) and the spin polarization or Sherman function for the scattering of electrons and positrons by atomic silver over the incident energies \(1\ \hbox {eV}\ -1\ \hbox {MeV}\) using the Dirac relativistic wave equation in the framework of the optical potential model (OPM). The energy dependence of the integral elastic cross sections (IECSs), the momentum transfer cross sections (MTCSs), the viscosity cross sections (VCSs), the inelastic cross sections (INCSs), the total ionization cross sections (TICSs) and the total cross sections (TCSs) are also calculated and discussed. The predicted results are compared with the available experimental and theoretical works found in the literature. The DCSs as well as the Sherman functions and other two spin asymmetry parameters \(U(\theta )\) and \(T(\theta )\) are calculated at some energies for the first time in this study. Eleven critical minima in the DCSs for \(e^{-}-\)Ag scattering are revealed, the energy and angular positions of which are discussed. We have found 22 maximum polarization points in the vicinity of CM for \(e^{-}-\)Ag collision. Among these 22 points, 21 satisfy the condition of total polarization. So far as we are concerned, the present work is the first one for the calculation of CMs in the DCSs for \(e^{-}-\)Ag scattering.

Graphic abstract

drafts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. L.C. Christophorou, Electron-Molecule Interactions and their Applications (Academic Press, Cambridge, 1984)

    Google Scholar 

  2. E. Gargioni, B. Grosswendt, Rev. Mod. Phys. 80, 451 (2008)

    Article  ADS  Google Scholar 

  3. K. Bartschat, M.J. Kushner, In: Proceedings of the National Academy of Sciences of United States of America, (2016), p. 7026

  4. M.E. Hosain, M. Atiqur, R. Patoary, M.M. Haque, A.K.F. Haque, M.I. Hossain, M. Alfaz Uddin, Arun K. Basak, M. Maaza, Bidhan C. Saha, Mol. Phys. 116, 631 (2018)

    Article  ADS  Google Scholar 

  5. M.I. Hossain, A.K.F. Haque, M. Atiqur, R. Patoary, M.A. Uddin, A.K. Basak, Eur. Phys. J. D 70, 41 (2016)

    Article  ADS  Google Scholar 

  6. Mahmudul H. Khandker, A.K.F. Haque, M. Maaza, M. Alfaz Uddin, Jpn. J. Appl. Phys. 59, SHHA05 (2020)

    Article  Google Scholar 

  7. S. Afroz, M.M. Haque, A.K.F. Haque, D.H. Jakubassa-Amundsen, M. Atiqur, R. Patoary, M. Shorifuddoza, Mahmudul H. Khandker, M. Alfaz Uddin, Res. Phys. 18, 103179 (2020)

    Google Scholar 

  8. R. Hasan, M.M. Haque, A.K.F. Haque, M. Shorifuddoza, Mahmudul H. Khandker, M. Atiqur R. Patoary, A.K. Basak, M. Maaza, B.C. Saha, M. Alfaz Uddin, Mol. Phys. e1849838 (2020). https://doi.org/10.1080/00268976.2020.1849838

  9. M. Shorifuddoza, M. Atiqur, R. Patoary, D.H. Jakubassa-Amundsen, A.K.F. Haque, M. Alfaz Uddin, Eur. Phys. J. D 73, 164 (2019)

    Article  ADS  Google Scholar 

  10. M. Shorifuddoza, P.K. Das, R. Kabir, A.K.F. Haque, M.A. Uddin, Int. J. Quantum. Chem. 121, e26460 (2021)

    Article  Google Scholar 

  11. B.P. Marinkovic, V. Pejcev, D.M. Filipovic, D. Sevic, A.R. Milosavljevic, S. Milosavljevic, M.S. Rabasovic, D. Pavlovic, J.B. Maljkovic, J. Phys.: Conf. Series 86, 012006012006 (2007)

    Google Scholar 

  12. V.E. Fortov, I.T. Iakubov, A.G. Khrapak, Physics of Strongly Coupled Plasma (Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  13. M.S. Dimitrijevic, S. Sahal-Brechot, Astron. Astrophys. Suppl. Series 140, 193 (1999)

    Article  ADS  Google Scholar 

  14. G.-Y. Liang, X. Bian, G. Zhao, Chin. Phys. 13, 891 (2004)

    Article  Google Scholar 

  15. P. Thoren, Astron. Astrophys. 358, L21 (2000)

    ADS  Google Scholar 

  16. L.D. Hulett, D.L. Donohue, J. Xu, T.A. Lewis, S.A. McLuckey, G.L. Glish, Chem. Phys. Lett. 216, 236 (1993)

    Article  ADS  Google Scholar 

  17. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  18. P. Asoka-Kumar, K. Lynn, J. de Phys, IV Colloque 05, C1 (1995)

    Google Scholar 

  19. C.M. Surko, R.G. Greaves, Phys. Plasmas 11, 2333 (2004)

    Article  ADS  Google Scholar 

  20. C.M. Surko, M. Leventhal, W.S. Crane, A. Passner, F. Wysocki, Rev. Sci. Instrum. 57, 1862 (1986)

    Article  ADS  Google Scholar 

  21. N. Guessoum, Eur. Phys. J. D 68, 137 (2014)

    Article  ADS  Google Scholar 

  22. K. Bartschat, J. Tennyson, O. Zatsarinny, Plasma Process Polym. 14, 1600093 (2017)

    Article  Google Scholar 

  23. N. Sinha, S. Singh, B. Antony, J. Phys. B: At. Mol. Opt. Phys. 51(1), 015204 (2017)

    Article  ADS  Google Scholar 

  24. K. Ratnavelu, M.J. Brunger, S.J. Buckman, J. Phys. Chem. Ref. Data 48(2), 023102 (2019)

    Article  ADS  Google Scholar 

  25. A.K.F. Haque, M.A. Uddin, D.H. Jakubassa-Amundsen, B.C. Saha, J. Phys. B: At. Mol. Opt. Phys. 51, 175202 (2018)

    Article  ADS  Google Scholar 

  26. D.H. Jakubassa-Amundsen, V. Yu Ponomarev, Eur. Phys. J. A 52, 48 (2016)

    Article  ADS  Google Scholar 

  27. D.H. Jakubassa-Amundsen, V. Yu Ponomarev, Phys. Rev. C 95, 024310 (2017)

    Article  ADS  Google Scholar 

  28. M. Dapor, Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization, vol. 271 (Springer Nature, Berlin, 2020)

    Google Scholar 

  29. D.G. Green, Comput. Phys. Commun. 224, 362 (2018)

    Article  ADS  Google Scholar 

  30. F. Arretche, M.V. Barp, A. Scheidt, E.P. Seidel, W. Tenfen, J. Phys. B: At. Mol. Opt. Phys. 52, 215201 (2019)

    Article  ADS  Google Scholar 

  31. D.H. Jakubassa-Amundsen, Nucl. Phys. A 975, 107 (2018)

    Article  ADS  Google Scholar 

  32. J. Yuan, Z. Zhang, Phys. Rev. A 48, 2018 (1993)

    Article  ADS  Google Scholar 

  33. B.S. Schlimme et al., Nucl. Instrum. Meth. Phys. Res. A 850, 54 (2017)

    Article  ADS  Google Scholar 

  34. J Kessler, In: Polarized Electrons, (Springer Series on Atomic, Optical, and Plasma Physics, 2nd Edition, 1985), p. 52

  35. A. Kumar, M.N.A. Abdullah, A.K.F. Haque, Indu Singh, M. Alfaz Uddin, J. Phys. Commun. 3, 065001 (2019)

    Article  Google Scholar 

  36. S. Medici, M. Peana, V.M. Nurchi, Maria Antonietta Zoroddu, J. Med. Chem. 62(13), 5923 (2019)

    Article  Google Scholar 

  37. J.-Y. Maillard, P. Hartemann, C. Rev, Microbiology 39(4), 373 (2013)

    Google Scholar 

  38. S. Medici, M. Peana, G. Crisponi, V.M. Nurchi, J.I. Lachowicz, M. Remelli, M.A. Zoroddu, Coord. Chem. Rev. 327–328, 349 (2016)

    Article  Google Scholar 

  39. C.K. Crawford, K.I. Wang, J. Chem. Phys. 47, 4667 (1967)

    Article  ADS  Google Scholar 

  40. S.I. Pavlov, V.I. Rakhovskiĭ, G.M. Fedorova, Sov. Phys. JETP 25, 12 (1967)

    ADS  Google Scholar 

  41. R.S. Freund, R.C. Wetzel, R.J. Shul, T.R. Hayes, Phys. Rev. A 41, 3575 (1990)

    Article  ADS  Google Scholar 

  42. S.D. Toŝić, V.I. Kelemen, D. Ŝević, V. Pejĉev, D.M. Filipović, EYu. Remeta, B.P. Marinković, Nucl. Instrum. Meth. Phys. Res. B 267, 283 (2009)

    Article  ADS  Google Scholar 

  43. M. Fink, J. Ingram, At. Data Nucl. data Tables 4, 129 (1972)

    Article  ADS  Google Scholar 

  44. M.E. Riley, J.C.J. MacCallum, F. Biggs, At. Data Nucl. Data Tables 15, 443 (1975)

    Article  ADS  Google Scholar 

  45. R. Mayol, F. Salvat, At. Data Nucl. Data Tables 65, 77 (1997)

    Article  Google Scholar 

  46. P.L. Bartlett, A.T. Stelbovics, Phys. Rev. A 66, 012707 (2002)

    Article  ADS  Google Scholar 

  47. D. Gupta, R. Naghma, B. Antony, Can. J. Phys. 91, 744 (2013)

    Article  ADS  Google Scholar 

  48. K. McNamara, D.V. Fursa, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 51, 085203 (2018)

    Article  ADS  Google Scholar 

  49. M.R. Badah, S.M.A. Allah, Tikrit J. Pure Sci. 23(3), 145 (2018)

    Google Scholar 

  50. M. Kaur, G. Kaur, A.K. Jain, H. Mohan, P.S. Singh, S. Sharma, Nucl. Instrum. Meth. Phys. Res. B 462, 38 (2020)

    Article  ADS  Google Scholar 

  51. M. Gryzinski, Phys. Rev. 115, 374 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  52. H.-W. Drawin, Z. Physik 164, 513 (1961)

    Article  ADS  Google Scholar 

  53. I.E. McCarthy, A.T. Stelbovics, Phys. Rev. A 28, 1322 (1983)

    Article  ADS  Google Scholar 

  54. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  55. A.G. Sanz, M.C. Fuss, F. Blanco, Z. Mašín, J.D. Gorfinkiel, R.P. McEachran, M.J. Brunger, G. García, Phys. Rev. A 88, 062704 (2013)

    Article  ADS  Google Scholar 

  56. A.T. Hansen, S.B. Hansen, J.B. Petersen, Phys. Med. Biol. 53, 353 (2008)

    Article  Google Scholar 

  57. H.L. Cox Jr., R.A. Bonham, J. Chem. Phys. 47, 2559 (1967)

    Article  ADS  Google Scholar 

  58. F. Salvat, J.D. Martinez, R. Mayol, J. Parellada, Phys. Rev. A 36, 467 (1987)

    Article  ADS  Google Scholar 

  59. M.E. Rose, Relativistic Electron Theory (Wiley, New York, 1961)

    MATH  Google Scholar 

  60. F. Salvat, J.M. Fernandez-Varea, W. Williamson, Comput. Phys. Commun. 90, 151 (1995)

    Article  ADS  Google Scholar 

  61. F. Salvat, Phys. Rev. A 68, 012708 (2003)

    Article  ADS  Google Scholar 

  62. A.K.F. Haque, M.I. Hossain, M. Alfaz Uddin, M. Atiqur, R. Patoary, A.K. Basak, M. Maaza, B.C. Saha, Mol. Phys. 115, 566 (2017)

    Article  ADS  Google Scholar 

  63. M.N.A. Abdullah, A. Kumar, A.K.F. Haque, M. Alfaz Uddin, Eur. Phys. J. D 74, 235 (2020)

    Article  ADS  Google Scholar 

  64. A.K.F. Haque, M.M. Haque, M.S. Hossain, M.I. Hossain, M. Atiqur, R. Patoary, M. Maaza, A.K. Basak, B.C. Saha, M. Alfaz Uddin, J. Phys. Commun. 2, 125013 (2018)

    Article  Google Scholar 

  65. F. Salvat, A. Jablonski, C.J. Powell, Comput, Phys, Commun. 165, 157 (2005)

    Article  ADS  Google Scholar 

  66. J.B. Furness, I.E. McCarthy, J. Phys. B: At. Mol. Opt. Phys. 6, 2280 (1973)

    Article  ADS  Google Scholar 

  67. J. Desclaux, Comput. Phys. Commun. 9, 31 (1975)

    Article  ADS  Google Scholar 

  68. J. Sun, G. Yu, Y. Jiang, S. Zhang, Eur. Phys. J. D 4, 83 (1998)

    Article  ADS  Google Scholar 

  69. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  70. A. Jain, Phys. Rev. A 41, 2437 (1990)

    Article  ADS  Google Scholar 

  71. [http://physics.nist.gov/PhysRefData/ASD/levelsform.html]

  72. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985)

    Book  Google Scholar 

  73. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 3rd edn. (Oxford University Press, London, 1965)

    MATH  Google Scholar 

  74. J. Kessler, Adv. At. Mol. Opt. Phys. 27, 81 (1990)

    Article  ADS  Google Scholar 

  75. A.K.F. Haque, M.M. Haque, P.P. Bhattacharjee, M.A. Uddin, M. Atiqur, R. Patoary, M.I. Hossain, A.K. Basak, M. Selim Mahbub, M. Maaza, B.C. Saha, J. Phys. Commun. 1, 035014 (2017)

    Article  Google Scholar 

  76. K.N. Joshipura, B.K. Antony, Phys. Lett. A 289, 323 (2001)

    Article  ADS  Google Scholar 

  77. K.N. Joshipura, S.S. Gangopadhyay, H.N. Kothari, Foram A. Shelat, Phys. Lett. A 373, 2876 (2009)

    Article  ADS  Google Scholar 

  78. K.N. Joshipura, M. Vinodkumar, B.K. Antony, N.J. Mason, Eur. Phys. J. D 23, 81 (2003)

    Article  ADS  Google Scholar 

  79. K.N. Joshipura, B.G. Vaishnav, S. Gangopadhyay, Int. J. Mass Spectrom. 261, 146 (2007)

    Article  Google Scholar 

  80. A. Beiser, Concepts of Modern Physics, 2nd edn. (McGraw-Hill Co, New York, 1973)

    MATH  Google Scholar 

  81. N. Bohr, Phil. Mag. 26(1), 476 (2013)

    ADS  Google Scholar 

  82. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer Science + Business Media, New York, 2006)

    Google Scholar 

  83. M.M. Haque, A.K.F. Haque, D.H. Jakubassa-Amundsen, M. Atiqur, R. Patoary, A.K. Basak, M. Maaza, B.C. Saha, M.A. Uddin, J. Phys. Commun. 3, 045011 (2019)

    Article  Google Scholar 

  84. D.W. Walker, Adv. Phys. 20, 257 (1971)

    Article  ADS  Google Scholar 

  85. H.A. Tolhoek, Rev. Mod. Phys. 28, 277 (1956)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. K. F. Haque and M. Masum Billah thankfully acknowledge the University of Rajshahi for the partial funding through the Project No-926/5/52/RU/Science-04/20-21.

Author information

Authors and Affiliations

Authors

Contributions

RH: Investigation, MNAA: Writing original draft, MS: Investigation, MHK: Editing, MARP: Editing, MMH: Review, PKD: Resources, MM: Review, MMB: Visualization, AKFH: Conceptualization, MAU: Software, validation.

Corresponding author

Correspondence to A. K. F. Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, R., Nure Alam Abdullah, M., Shorifuddoza, M. et al. Scattering of e\(^\pm \) off silver atom over the energy range 1 eV–1 MeV. Eur. Phys. J. D 75, 204 (2021). https://doi.org/10.1140/epjd/s10053-021-00222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00222-4

Navigation