Skip to main content
Log in

Measure and control of quantum correlations in optomechanics

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, we analyze the enhancement of the transfer of the quantum correlations from squeezed light to movable mirrors in an optomechanical system. This transfer is produced using a degenerate parametric amplifier placed inside each of the two cavities of the system. These cavities are coupled via photon-hopping process. The double-cavity optomechanical system is pumped by squeezed light and driven by coherent laser sources. The two cavities are spatially coupled via a broadband squeezed light and driven at red-detuned sidebands. In our analysis, we shall work in the framework of the Markovian approximation. In each cavity, the optical mode is coupled to mechanical mode via radiation pressure. We discuss the quantum correlations (steering, entanglement and discord) of the two mechanical oscillators. We consider Gaussian quantum steering to measure the steerability between the two mechanical oscillators and the logarithmic negativity to measure quantum entanglement. The quantum correlations are measured even beyond entanglement via Gaussian quantum discord. We show that the logarithmic negativity depends on the parameter amplifier gain, the cavity–cavity coupling, the optomechanical cooperativity, the dissipation rate and the bath temperature of the mechanical oscillators. We found that the transfer of quantum correlations in the steady state can be enhanced via degenerate parametric amplifier for low dissipation rate and via strong coupling optomechanics. We show also that the quantum correlations are robust against thermal fluctuations. We discuss how this quantum discord is more robust than entanglement which is more robust than steering. By using recent experimental parameters, we show also that the proposed scheme can be implemented by current experimental technology.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no data associated in a data repository. [Authors’ comment: We confirm that we have not use data.]

References

  1. J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. Whittaker, K. Lehnert, R. Simmonds, Nature 475(7356), 359 (2011)

    Article  ADS  Google Scholar 

  2. S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M.B. Plenio, A. Retzker, Phys. Rev. Lett. 108(15), 153601 (2012)

    Article  ADS  Google Scholar 

  3. J. Chan, T.P.M. Alegre, A.H. SafaviNaeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Nature 478(7367), 89 (2011)

    Article  ADS  Google Scholar 

  4. M. Bhattacharya, P. Meystre, Phys. Rev. Lett. 99(7), 073601 (2007)

    Article  ADS  Google Scholar 

  5. J.Q. Liao, L. Tian, Phys. Rev. Lett. 116(16), 163602 (2016)

    Article  ADS  Google Scholar 

  6. Z.-X. Liu, B. Wang, C. Kong, L.-G. Si, H. Xiong, Y. Wu, Sci. Rep. 7, 12521 (2017)

    Article  ADS  Google Scholar 

  7. H. Xiong, L.G. Si, Y. Wu, Appl. Phys. Lett. 110, 171102 (2017)

    Article  ADS  Google Scholar 

  8. H. Xiong, Z.X. Liu, Y. Wu, Opt. Lett. 42, 3630 (2017)

    Article  ADS  Google Scholar 

  9. C.M. Caves, Phys. Rev. Lett. 45, 75 (1980)

    Article  ADS  Google Scholar 

  10. A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gürsel, S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, M.E. Zucker, LIGO: the laser interferometer gravitational-wave observatory. Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  11. V. Braginsky, S.P. Vyatchanin, Phys. Lett. A 293, 228 (2002)

    Article  ADS  Google Scholar 

  12. E.A. Sete, H. Eleuch, C.H.R. Ooi, J. Opt. Soc. Am. B 31, 2821 (2014)

    Article  ADS  Google Scholar 

  13. Y.-D. Wang, A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  14. S. Singh, H. Jing, E.M. Wright, P. Meystre, Phys. Rev. A 86, 021801 (2012)

    Article  ADS  Google Scholar 

  15. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 40, 1895 (1993)

    Article  ADS  Google Scholar 

  16. S. Pirandola et al., Phys. Rev. Lett. 97, 150403 (2006)

    Article  ADS  Google Scholar 

  17. M. Abdi et al., Phys. Rev. A 89, 022331 (2014)

    Article  ADS  Google Scholar 

  18. M. Asjad, N.E. Abari, S. Zippilli, D. Vitali, Opt. Express 27(22), 32427–32444 (2019)

    Article  ADS  Google Scholar 

  19. Q. He, L. Rosales-Zarate, G. Adesso, M.D. Reid, Phys. Rev. Lett. 115, 180502 (2015)

    Article  ADS  Google Scholar 

  20. M. Asjad et al., Phys. Rev. A 94, 052312 (2016)

    Article  ADS  Google Scholar 

  21. G.S. Agarwal, S. Huang, Phys. Rev. A 93, 043844 (2016)

    Article  ADS  Google Scholar 

  22. M. Amazioug, M. Nassik, N. Habiballah, Eur. Phys. J. D 72, 171 (2018)

    Article  ADS  Google Scholar 

  23. M. Amazioug, M. Nassik, N. Habiballah, Optik Int. J. Light Electr. Opt. 158, 1186–1193 (2018)

    Article  Google Scholar 

  24. M. Amazioug, M. Nassik, N. Habiballah, Int. J. Quant. Inf. 16, 1850043 (2018)

    Article  Google Scholar 

  25. J. El Qars, M. Daoud, Ah.L. Laamara, Int. J. Quant. Inform 13, 1550041 (2015)

  26. S. Bougouffa, M. Al-Hmoud, Int. J. Theor. Phys. 59(6), 1699–1716 (2020)

    Article  Google Scholar 

  27. A.A. Rehaily, S. Bougouffa, Int. J. Theor. Phys. 56, 1399 (2017)

    Article  Google Scholar 

  28. C. Joshi, J. Larson, M. Jonson, E. Andersson, P. Öhberg, Phys. Rev. A 85(3), 033805 (2012)

    Article  ADS  Google Scholar 

  29. S. Ullah, H.S. Qureshi, F. Ghafoor, Appl. Opt. 58(26), 7014–7021 (2019)

    Article  ADS  Google Scholar 

  30. M. Amazioug, B. Maroufi, M. Daoud, Quantum Inf. Process. 19, 160 (2020)

    Article  ADS  Google Scholar 

  31. M. Amazioug, B. Maroufi, M. Daoud, Eur. Phys. J. D 74, 54 (2020)

    Article  ADS  Google Scholar 

  32. C.S. Hu, X.R. Huang, L.T. Shen, Z.B. Yang, H.Z. Wu, Eur. Phys. J. D 71(2), 24 (2017)

    Article  ADS  Google Scholar 

  33. C.S. Hu, X.Y. Lin, L.T. Shen, W.J. Su, Y.K. Jiang, H. Wu, S.B. Zheng, Opt. Express 28(2), 1492–1506 (2020)

    Article  ADS  Google Scholar 

  34. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  35. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004)

    Article  ADS  Google Scholar 

  36. I. Kogias, A.R. Lee, S. Ragy, G. Adesoo, Phys. Rev. Lett. 114, 060403 (2015)

    Article  ADS  Google Scholar 

  37. P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  38. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  39. L.A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Phys. Rev. Lett. 57, 2520 (1986)

    Article  ADS  Google Scholar 

  40. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  41. C.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986)

    Article  ADS  Google Scholar 

  42. S. Huang, G.S. Agarwal, New J. Phys. 11, 103044 (2009)

    Article  ADS  Google Scholar 

  43. V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  44. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2000), p. 71

    Book  MATH  Google Scholar 

  45. A. Mari, J. Eisert, J. Eisert. Phys. Rev. Lett. 103, 213603 (2009)

    Article  ADS  Google Scholar 

  46. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  47. E.X. DeJesus, C. Kaufman, Phys. Rev. A 35, 5288 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Vitali et al., Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  49. P.C. Parks, V. Hahn, Stability Theory (Prentice Hall, New York, 1993)

    MATH  Google Scholar 

  50. R. Simon, E. Sudarshan, N. Mukunda, Phys. Rev. A 36, 3868 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Simon, N. Mukunda, B. Dutta, Phys. Rev. A 49, 1567 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  52. L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  53. G. Giedke et al., Phys. Rev. Lett. 91, 107901 (2003)

    Article  ADS  Google Scholar 

  54. P. Marian, T.A. Marian, Phys. Rev. Lett. 101, 220403 (2008)

    Article  ADS  Google Scholar 

  55. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  56. D. Girolami, G. Adesso, Phys. Rev. A 83(5), 052108 (2011)

    Article  ADS  Google Scholar 

  57. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 81 (2009)

    Article  Google Scholar 

  58. J.S. Bell, Physics 1, 195 (1964)

    Article  Google Scholar 

  59. M. Amazioug, B. Maroufi, M. Daoud, Phys. Lett. A 384, 126705 (2020)

    Article  MathSciNet  Google Scholar 

  60. Z. Ficek, R. Tanaś, Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  61. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  62. A. AlQasimi, D.F.V. James, Phys. Rev. A 77, 12117 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank David Vitali for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amazioug.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amazioug, M., Daoud, M. Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D 75, 178 (2021). https://doi.org/10.1140/epjd/s10053-021-00178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00178-5

Navigation