Skip to main content
Log in

Ion-acoustic shock waves in magnetized pair-ion plasma

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A theoretical investigation associated with obliquely propagating ion-acoustic shock waves (IASHWs) in a three-component magnetized plasma having inertialess non-extensive electrons, inertial warm positive, and negative ions has been performed. A Burgers equation is derived by employing the reductive perturbation method. The plasma model supports both positive and negative shock structures. It is found that the positive and negative shock wave potentials increase with the oblique angle (\(\delta \)) which arises due to the external magnetic field. It is also observed that the magnitude of the amplitude of positive and negative shock waves is not affected by the variation of the ion kinematic viscosity but the steepness of the positive and negative shock waves decreases with ion kinematic viscosity. The implications of our findings in space and laboratory plasmas are briefly discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.]

References

  1. A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite Jr., E.C. Sittler Jr., Geophys. Res. Lett. 34, L22103 (2007)

    Article  ADS  Google Scholar 

  2. H. Massey, Negative Ions, 3rd edn. (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  3. R. Sabry, W.M. Moslem, P.K. Shukla, Phys. Plasmas 16, 032302 (2009)

    Article  ADS  Google Scholar 

  4. H.G. Abdelwahed, E.K. El-Shewy, M.A. Zahran, S.A. Elwakil, Phys. Plasmas 23, 022102 (2016)

    Article  ADS  Google Scholar 

  5. A.P. Misra, Phys. Plasmas 16, 033702 (2009)

    Article  ADS  Google Scholar 

  6. A. Mushtaq, M.N. Khattak, Z. Ahmad, A. Qamar, Phys. Plasmas 19, 042304 (2012)

    Article  ADS  Google Scholar 

  7. N. Jannat, M. Ferdousi, A.A. Mamun, Commun. Theor. Phys. 64, 479 (2015)

    Article  ADS  Google Scholar 

  8. S.K. El-Labany, E.E. Behery, H.N.A. El-Razek, L.A. Abdelrazek, Eur. Phys. J. D 74, 104 (2020)

    Article  ADS  Google Scholar 

  9. P.H. Chaizy, H. Rème, J.A. Sauvaud, C. D’uston, R.P. Lin, D.E. Larson, D.L. Mitchell, K.A. Anderson, C.W. Carlson, A. Korth, D.A. Mendis, Nature (London) 349, 393 (1991)

  10. Y. Nakamura, I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984)

    Article  ADS  Google Scholar 

  11. B. Song, N. D́Angelo, R.L. Merlino, Phys. Fluids B 3, 284 (1991)

  12. N. Sato, Plasma Sources Sci. Technol. 3, 395 (1994)

    Article  ADS  Google Scholar 

  13. M. Bacal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  14. R.A. Gottscho, C.E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)

    Article  ADS  Google Scholar 

  15. A.Y. Wong, D.L. Mamas, D. Arnush, Phys. Fluids 18, 1489 (1975)

    Article  ADS  Google Scholar 

  16. Y. Nakamura, T. Odagiri, I. Tsukabayashi, Plasma Phys. Control. Fusion 39, 105 (1997)

    Article  ADS  Google Scholar 

  17. J.L. Cooney, M.T. Gavin, K.E. Lonngren, Phys. Fluids B 3, 2758 (1991)

    Article  ADS  Google Scholar 

  18. Y. Nakamura, H. Bailung, K.E. Lonngren, Phys. Plasmas 6, 3466 (1999)

  19. D.P. Sheehan, N. Rynn, Rev. Sci. lnstrum. 59, 8 (1988)

    Article  Google Scholar 

  20. R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, Y. Kawai, Phys. Plasmas 9, 4481 (2002)

    Article  ADS  Google Scholar 

  21. W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003)

    Article  ADS  Google Scholar 

  22. R. Hatakeyama, W. Oohara, Phys. Scripta 116, 101 (2005)

    Article  Google Scholar 

  23. W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)

    Article  ADS  Google Scholar 

  24. S.H. Hansen, New Astron. 10, 371 (2005)

    Article  ADS  Google Scholar 

  25. J.R. Asbridge, S.J. Bame, I.B. Strong, J. Geophys. Res. 73, 5777 (1968)

    Article  ADS  Google Scholar 

  26. R. Lundlin, A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E.M. Dubinin, S.W. Barabash, I. Liede, H. Koskinen, Nature (London) 341, 609 (1989)

    Article  ADS  Google Scholar 

  27. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 1025 (2003)

    Article  Google Scholar 

  28. S.M. Krimigis, J.F. Carbary, E.P. Keath, T.P. Armstrong, L.J. Lanzerotti, G. Gloeckler, J. Geophys. Res. 88, 8871 (1983)

    Article  ADS  Google Scholar 

  29. A. Rényi, Acta Math. Acad. Sci. Hung. 6, 285 (1955)

    Article  Google Scholar 

  30. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  31. S. Hussain, N. Akhtar, S. Mahmood, Phys. Plasmas 20, 092303 (2013)

    Article  ADS  Google Scholar 

  32. M. Tribeche, L. Djebarni, R. Amour, Phys. Plasmas 17, 042114 (2010)

    Article  ADS  Google Scholar 

  33. M.G. Hafez, M.R. Talukder, M.H. Ali, Plasma Phys. Rep. 43, 499 (2017)

    Article  ADS  Google Scholar 

  34. H.G. Abdelwahed, E.K. El-Shewy, A.A. Mahmoud, J. Exp. Theor. Phys. 122, 1111 (2016)

    Article  ADS  Google Scholar 

  35. M.M. Hossen, L. Nahar, M.S. Alam, S. Sultana, A.A. Mamun, High Energy Density Phys. 24, 9 (2017)

    Article  ADS  Google Scholar 

  36. A. Atteya, S. Sultana, R. Schlickeiser, Chin. J. Phys. 56, 1931 (2018)

    Article  Google Scholar 

  37. N.C. Adhikary, Phys. Lett. A 376, 1460 (2012)

    Article  ADS  Google Scholar 

  38. A.N. Dev, M.K. Deka, Phys. Plasmas 25, 072117 (2018)

    Article  ADS  Google Scholar 

  39. A.N. Dev, M.K. Deka, J. Sarma, D. Saikia, N.C. Adhikary, Chin. Phys. B 25, 105202 (2016)

    Article  ADS  Google Scholar 

  40. A.N. Dev, J. Sarma, M.K. Deka, A.P. Misra, N.C. Adhikary, Commun. Theor. Phys. 62, 875 (2014)

    Article  Google Scholar 

  41. M.K. Deka, A.N. Dev, Plasma Phys. Rep. 44, 965 (2018)

    Article  ADS  Google Scholar 

  42. B. Sahu, A. Sinha, R. Roychoudhury, Phys. Plasmas 21, 103701 (2014)

    Article  ADS  Google Scholar 

  43. H. Washimi, T. Taniuti, Phys. Rev. Lett. 17, 996 (1966)

    Article  ADS  Google Scholar 

  44. V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, Oxford, 1975)

    Google Scholar 

  45. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ano-nymous reviewers for their constructive suggestions which have significantly improved the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to complete this work.

Corresponding author

Correspondence to T. Yeashna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeashna, T., Shikha, R.K., Chowdhury, N.A. et al. Ion-acoustic shock waves in magnetized pair-ion plasma. Eur. Phys. J. D 75, 135 (2021). https://doi.org/10.1140/epjd/s10053-021-00139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00139-y

Navigation