Skip to main content

Transmission of \(3\hbox {-keV Ne}^{7+}\) ion through nanocapillaries probing the discharge process

Abstract

Experiments were carried out to study the transmission of \(3\hbox {-keV Ne}^{7+}\) ions through nanocapillaries in polyethylene terephthalate (PET). The capillaries were highly parallel with a diameter of 230 nm and a length of \(12\, \mu \hbox {m}\). The transmission during the charging and discharging processes was measured for different tilt angles ranging from \(3^{\circ }\) to \(9^{\circ }\). An advanced instrumental technique was employed to avoid recharging effects during the discharging process. During discharging, the decay of the guided transmission is found to be non-exponential depending strongly on the tilt angle. The experiments were interpreted by model calculations using a minimum number of free parameters. The discharging results for different tilt angles are reproduced by a single decay function involving nonlinear properties. After measuring the discharge for nearly 7 hours, the charge depletion rate was found to be unexpectedly small resulting in a long duration of the charges in the capillary.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no data available that can be deposited.]

References

  1. N. Stolterfoht, J.H. Bremer, V. Hoffmann, R. Hellhammer, D. Fink, A. Petrov, B. Sulik, Phys. Rev. Lett. 88, 133201 (2002)

    Article  ADS  Google Scholar 

  2. L. Hägg, C.O. Reinhold, J. Burgdörfer, Phys. Rev. A 55, 2097 (1997)

    Article  ADS  Google Scholar 

  3. N. Stolterfoht, R. Hellhammer, Z.D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, B. Sulik, Vacuum 73, 31 (2004)

    Article  ADS  Google Scholar 

  4. M.B. Sahana, P. Skog, G. Víkor, R.T. Rajendra-Kumar, R. Schuch, Phys. Rev. A 73, 040901(R) (2006)

    Article  ADS  Google Scholar 

  5. S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Z. Juhász, S. Biri, É. Fekete, I. Iván, F. Gáll, B. Sulik, G. Víkor et al., Nanotechnology 17, 3915 (2006)

    Article  ADS  Google Scholar 

  6. N. Stolterfoht, R. Hellhammer, J. Bundesmann, D. Fink, Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, Y. Yamazaki, Phys. Rev. A 76, 022712 (2007)

    Article  ADS  Google Scholar 

  7. P. Skog, I.L. Soroka, A. Johansson, R. Schuch, Nucl. Instrum. Methods Phys. Res. B 258, 145 (2007)

    Article  ADS  Google Scholar 

  8. Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, R. Hellhammer, N. Stolterfoht, Y. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 258, 155 (2007)

    Article  ADS  Google Scholar 

  9. A.R. Milosavljević, G. Víkor, Z.D. Peš ić, P. Kolarž, D. Šević, B.P. Marinković, S. Máté fi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Phys. Rev. A 75, 030901(R) (2007)

    Article  ADS  Google Scholar 

  10. B.S. Dassanayake, D. Keerthisinghe, S. Wickramarachchi, A. Ayyad, S. Das, N. Stolterfoht, J.A. Tanis, Nucl. Instrum. Methods Phys. Res. B 298, 1 (2013)

    Article  ADS  Google Scholar 

  11. R. Bereczky, G. Kowarik, F. Aumayr, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 267, 317 (2009)

    Article  ADS  Google Scholar 

  12. G. Kowarik, R.J. Bereczky, F. Aumayr, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 267, 2277 (2009)

    Article  ADS  Google Scholar 

  13. R. Nakayama, M. Tona, N. Nakamura, H. Watanabe, N. Yoshiyasu, C. Yamada, A. Yamazaki, S. Ohtani, M. Sakurai, Nucl. Instrum. Methods Phys. Res. B 267, 2381 (2009)

    Article  ADS  Google Scholar 

  14. E. Gruber, G. Kowarik, F. Ladening, J.P. Waclawek, F. Aumayr, R.J. Bereczky, K. Tökési, P. Gunacker, T. Schweigler, C. Lemell et al., Phys. Rev. A 86, 062901 (2012)

    Article  ADS  Google Scholar 

  15. T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, M. Hoshino, T. Nebiki, T. Narusawa, Appl. Phys. Lett. 89, 163502 (2006)

    Article  ADS  Google Scholar 

  16. A. Cassimi, T. Muranaka, L. Maunoury, H. Lebius, B. Manil, B.A. Huber, T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai et al., Int. J. Nanotechnol. 5, 809 (2008)

    Article  ADS  Google Scholar 

  17. E. Gruber, N. Stolterfoht, P. Allinger, S. Wampla, Y. Wang, M.J. Simon, F. Aumayr, Nucl. Instrum. Methods Phys. Res. B 340, 1 (2014)

    Article  ADS  Google Scholar 

  18. K. Schiessl, W. Palfinger, K. Tökési, H. Nowotny, C. Lemell, J. Burgdörfer, Phys. Rev. A 72, 062902 (2005)

    Article  ADS  Google Scholar 

  19. K. Schiessl, W. Palfinger, K. Tökési, H. Nowotny, C. Lemell, J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 258, 150 (2007)

    Article  ADS  Google Scholar 

  20. N. Stolterfoht, Phys. Rev. A 87, 012902 (2013)

    Article  ADS  Google Scholar 

  21. N. Stolterfoht, Phys. Rev. A 87, 032901 (2013)

  22. J. Frenkel, Phys. Rev. 54, 647 (1938)

    Article  ADS  Google Scholar 

  23. E. Giglio, K. Tökési, R.D. DuBois, Nucl. Instrum. Methods Phys. Res. B 460, 234 (2019)

    Article  ADS  Google Scholar 

  24. E. Giglio, Phys. Rev. A 101, 052707 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Lemell, J. Burgdörfer, F. Aumayr, Progr. Surface Science 88, 237 (2013)

    Article  ADS  Google Scholar 

  26. N. Stolterfoht, Y. Yamazaki, Phys. Rep. 629, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Liesegang, B.C. Senn, J. Appl. Phys. 80, 6336 (1996)

    Article  ADS  Google Scholar 

  28. A.R. Blyth, Electrical Properties of Polymers (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  29. A. Cassimi, T. Ikeda, L. Maunoury, C.L. Zhou, S. Guillous, A. Mery, H. Lebius, A. Benyagoub, C. Grygiel, H. Khemliche et al., Phys. Rev. A 86, 062902 (2012)

  30. E. Giglio, S. Guillous, A. Cassimi, Phys. Rev. A 98, 052704 (2018)

    Article  ADS  Google Scholar 

  31. N. Stolterfoht, Phys. Rev. A 89, 062706 (2014)

    Article  ADS  Google Scholar 

  32. S. Biri, R. Rácz, J. Pálinkás, Rev. Sci. Instrum. 83, 02A341 (2012)

    Article  Google Scholar 

  33. P. Herczku, Z. Juhász, S.T.S. Kovacs, R. Rácz, S. Biri, I. Rajta, G.A.B. Gal, S.Z. Szilasi, J. Pálinkás, B. Suli, Nucl. Instrum. Methods Phys. Res. B 354, 71 (2015)

    Article  ADS  Google Scholar 

  34. Z. Juhász, B. Sulik, R. Rácz, S. Biri, R.J. Bereczky, K. Tökési, Á. Köver, J. Pálinkás, N. Stolterfoht, Phys. Rev. A 82, 062903 (2010)

    Article  ADS  Google Scholar 

  35. N. Stolterfoht, Atoms 8, 48 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian National Office Research, Development and Innovation Office NKFIH, Grant No.: OTKA-K8388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Stolterfoht.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stolterfoht, N., Juhász, Z., Herczku, P. et al. Transmission of \(3\hbox {-keV Ne}^{7+}\) ion through nanocapillaries probing the discharge process. Eur. Phys. J. D 75, 136 (2021). https://doi.org/10.1140/epjd/s10053-021-00136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00136-1