Abstract
Experiments were carried out to study the transmission of \(3\hbox {-keV Ne}^{7+}\) ions through nanocapillaries in polyethylene terephthalate (PET). The capillaries were highly parallel with a diameter of 230 nm and a length of \(12\, \mu \hbox {m}\). The transmission during the charging and discharging processes was measured for different tilt angles ranging from \(3^{\circ }\) to \(9^{\circ }\). An advanced instrumental technique was employed to avoid recharging effects during the discharging process. During discharging, the decay of the guided transmission is found to be non-exponential depending strongly on the tilt angle. The experiments were interpreted by model calculations using a minimum number of free parameters. The discharging results for different tilt angles are reproduced by a single decay function involving nonlinear properties. After measuring the discharge for nearly 7 hours, the charge depletion rate was found to be unexpectedly small resulting in a long duration of the charges in the capillary.
Graphic abstract

This is a preview of subscription content, access via your institution.







Data Availability Statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no data available that can be deposited.]
References
N. Stolterfoht, J.H. Bremer, V. Hoffmann, R. Hellhammer, D. Fink, A. Petrov, B. Sulik, Phys. Rev. Lett. 88, 133201 (2002)
L. Hägg, C.O. Reinhold, J. Burgdörfer, Phys. Rev. A 55, 2097 (1997)
N. Stolterfoht, R. Hellhammer, Z.D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, B. Sulik, Vacuum 73, 31 (2004)
M.B. Sahana, P. Skog, G. Víkor, R.T. Rajendra-Kumar, R. Schuch, Phys. Rev. A 73, 040901(R) (2006)
S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Z. Juhász, S. Biri, É. Fekete, I. Iván, F. Gáll, B. Sulik, G. Víkor et al., Nanotechnology 17, 3915 (2006)
N. Stolterfoht, R. Hellhammer, J. Bundesmann, D. Fink, Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, Y. Yamazaki, Phys. Rev. A 76, 022712 (2007)
P. Skog, I.L. Soroka, A. Johansson, R. Schuch, Nucl. Instrum. Methods Phys. Res. B 258, 145 (2007)
Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, R. Hellhammer, N. Stolterfoht, Y. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 258, 155 (2007)
A.R. Milosavljević, G. Víkor, Z.D. Peš ić, P. Kolarž, D. Šević, B.P. Marinković, S. Máté fi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Phys. Rev. A 75, 030901(R) (2007)
B.S. Dassanayake, D. Keerthisinghe, S. Wickramarachchi, A. Ayyad, S. Das, N. Stolterfoht, J.A. Tanis, Nucl. Instrum. Methods Phys. Res. B 298, 1 (2013)
R. Bereczky, G. Kowarik, F. Aumayr, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 267, 317 (2009)
G. Kowarik, R.J. Bereczky, F. Aumayr, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 267, 2277 (2009)
R. Nakayama, M. Tona, N. Nakamura, H. Watanabe, N. Yoshiyasu, C. Yamada, A. Yamazaki, S. Ohtani, M. Sakurai, Nucl. Instrum. Methods Phys. Res. B 267, 2381 (2009)
E. Gruber, G. Kowarik, F. Ladening, J.P. Waclawek, F. Aumayr, R.J. Bereczky, K. Tökési, P. Gunacker, T. Schweigler, C. Lemell et al., Phys. Rev. A 86, 062901 (2012)
T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, M. Hoshino, T. Nebiki, T. Narusawa, Appl. Phys. Lett. 89, 163502 (2006)
A. Cassimi, T. Muranaka, L. Maunoury, H. Lebius, B. Manil, B.A. Huber, T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai et al., Int. J. Nanotechnol. 5, 809 (2008)
E. Gruber, N. Stolterfoht, P. Allinger, S. Wampla, Y. Wang, M.J. Simon, F. Aumayr, Nucl. Instrum. Methods Phys. Res. B 340, 1 (2014)
K. Schiessl, W. Palfinger, K. Tökési, H. Nowotny, C. Lemell, J. Burgdörfer, Phys. Rev. A 72, 062902 (2005)
K. Schiessl, W. Palfinger, K. Tökési, H. Nowotny, C. Lemell, J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 258, 150 (2007)
N. Stolterfoht, Phys. Rev. A 87, 012902 (2013)
N. Stolterfoht, Phys. Rev. A 87, 032901 (2013)
J. Frenkel, Phys. Rev. 54, 647 (1938)
E. Giglio, K. Tökési, R.D. DuBois, Nucl. Instrum. Methods Phys. Res. B 460, 234 (2019)
E. Giglio, Phys. Rev. A 101, 052707 (2020)
C. Lemell, J. Burgdörfer, F. Aumayr, Progr. Surface Science 88, 237 (2013)
N. Stolterfoht, Y. Yamazaki, Phys. Rep. 629, 1 (2016)
J. Liesegang, B.C. Senn, J. Appl. Phys. 80, 6336 (1996)
A.R. Blyth, Electrical Properties of Polymers (Cambridge University Press, Cambridge, 1980)
A. Cassimi, T. Ikeda, L. Maunoury, C.L. Zhou, S. Guillous, A. Mery, H. Lebius, A. Benyagoub, C. Grygiel, H. Khemliche et al., Phys. Rev. A 86, 062902 (2012)
E. Giglio, S. Guillous, A. Cassimi, Phys. Rev. A 98, 052704 (2018)
N. Stolterfoht, Phys. Rev. A 89, 062706 (2014)
S. Biri, R. Rácz, J. Pálinkás, Rev. Sci. Instrum. 83, 02A341 (2012)
P. Herczku, Z. Juhász, S.T.S. Kovacs, R. Rácz, S. Biri, I. Rajta, G.A.B. Gal, S.Z. Szilasi, J. Pálinkás, B. Suli, Nucl. Instrum. Methods Phys. Res. B 354, 71 (2015)
Z. Juhász, B. Sulik, R. Rácz, S. Biri, R.J. Bereczky, K. Tökési, Á. Köver, J. Pálinkás, N. Stolterfoht, Phys. Rev. A 82, 062903 (2010)
N. Stolterfoht, Atoms 8, 48 (2020)
Acknowledgements
This work was supported by the Hungarian National Office Research, Development and Innovation Office NKFIH, Grant No.: OTKA-K8388.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stolterfoht, N., Juhász, Z., Herczku, P. et al. Transmission of \(3\hbox {-keV Ne}^{7+}\) ion through nanocapillaries probing the discharge process. Eur. Phys. J. D 75, 136 (2021). https://doi.org/10.1140/epjd/s10053-021-00136-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjd/s10053-021-00136-1