Skip to main content
Log in

Oscillator strengths, transition probabilities and state lifetimes of on- and off-center donor impurities in quantum dots: off-center displacement, quantum size and potential-shape effects

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nonrelativistic dipole matrix elements, oscillator strengths, transition probabilities and states lifetimes of quantum dots with centered and off-centered hydrogenic impurities are studied. The effects of the off-center displacement combined to the shape of the confining potential are investigated. These optical parameters are found to be strongly modified by the parameters characterizing the confinement as well as by taking into account of the off-center shift. It is found that the oscillator strengths present a minimum for certain values of the confinement potential range and of the off-center displacement, principally due to the reaching of a low energy gap between the levels involved in the concerned transition. Likewise, the states lifetimes increase with the off-center displacement whatever the shape of the confinement potential is because of the reduction of the gap between the energies of the states when the displacement is no longer equal to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: The datasets generated and/or analysed during the study are not publicly available but are available from the corresponding author on reasonable request.]

References

  1. Á. Nemcsics, in Quantum Dots - Theory and Applications, ed. by V.N. Stavrou (IntechOpen, London, 2015), p. 119

    Google Scholar 

  2. Hatice Taş, Mehmet Şahin, J. Appl. Phys. 112, 053717 (2012)

    Google Scholar 

  3. D.S. Chuu, C.M. Hsiao, W.N. Mei, Phys. Rev. B 46, 3898 (1992)

    Article  ADS  Google Scholar 

  4. J.L. Zhu, J. Wu, R.T. Fu, H. Chen, Y. Kawazoe, Phys. Rev. B 55, 1673 (1997)

    Article  ADS  Google Scholar 

  5. R. Cabrera-Trujillo, R. Méndez-Fragoso, S.A. Cruz. J. Phys. B: At. Mol. Opt. Phys. 50, 135002 (2017)

    Article  ADS  Google Scholar 

  6. R.L.M. Melono, D. Dobgima, O. Motapon, Can. J. Phys. 96, 1104 (2018)

    Article  ADS  Google Scholar 

  7. A. Coronado, in Review of quantum wires and dots in nanotechnology, (Introduction to nanotechnology Spring, 2013)

  8. G. Bastard, Phys. Rev. B 24, 4714 (1981)

    Article  ADS  Google Scholar 

  9. J.L. Zhu, J.J. Xiong, B.L. Gu, Phys. Rev. B 41, 6001 (1990)

    Article  ADS  Google Scholar 

  10. N. Porras-Montenegro, S.T. Pérez-Merchancano, Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  11. J.L. Zhu, X. Chen, Phys. Rev. B 50, 4497 (1994)

    Article  ADS  Google Scholar 

  12. C.M. Duque, M.G. Barseghyan, C.A. Duque, Eur. Phys. J. B 73, 309 (2010)

    Article  ADS  Google Scholar 

  13. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

  14. E. Sadeghi, A. Avazpour, Physica B 406, 241 (2011)

    Article  ADS  Google Scholar 

  15. B. Cakir, Y. Yakar, A. Özmen, Opt. Commun. 311, 222 (2013)

    Article  ADS  Google Scholar 

  16. R.L. Melingui Melono, C. Fai Lukong, O. Motapon, J. Phys. B: At. Mol. Opt. Phys. 51, 205005 (2018)

    Article  ADS  Google Scholar 

  17. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms (Springer International Publishing, Heidelberg, 1957)

    Book  Google Scholar 

  18. W.L. Wiese, J.R. Fuhr, J. Phys. Chem. Ref. Data 38, 565 (2009)

    Article  ADS  Google Scholar 

  19. K.P. Anil, N.N. Sultana, Atomic Astrophysics and Spectroscopy (Cambridge University Press, New York, 2011)

    Google Scholar 

  20. S. Yilmaz, H. Safak, Physica E 36, 40 (2007)

    Article  ADS  Google Scholar 

  21. V.A. Holovatsky, O.M. Makhanetsand Voitsekhivska, Physica E 41, 1522 (2009)

    Article  ADS  Google Scholar 

  22. G. Safarpour, M. Novzari, M.A. Izadi, S. Yazdanpanahi, Physica E 66, 148 (2015)

    Article  ADS  Google Scholar 

  23. R.L. Melingui Melono, P. Doba, A.J. Etindele, O. Motapon, Phys. Scr. 95, 055401 (2020)

    Article  ADS  Google Scholar 

  24. R.L. Melingui Melono, A.J. Etindele, T. Tchakoua, S.A. Ndengué, O. Motapon, J. Phys. B: At. Mol. Opt. Phys. 48, 215001 (2015)

    Article  ADS  Google Scholar 

  25. C. deBoor, A Practical Guide to Splines (Springer, New York, 1978)

    Book  Google Scholar 

  26. J. Sapirstein, W.R. Johnson, J. Phys. B: At. Mol. Opt. Phys. 29, 5213 (1996)

    Article  ADS  Google Scholar 

  27. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Rep. Prog. Phys. 64, 1815 (2001)

    Article  ADS  Google Scholar 

  28. A. Solórzano, N. Aquino, A. Flores-Riveros, Can. J. Phys. 94, 894 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Melingui Melono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doba, P., Melono, R.L.M., Etindele, A.J. et al. Oscillator strengths, transition probabilities and state lifetimes of on- and off-center donor impurities in quantum dots: off-center displacement, quantum size and potential-shape effects. Eur. Phys. J. D 75, 110 (2021). https://doi.org/10.1140/epjd/s10053-021-00130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00130-7

Navigation