Skip to main content

Advertisement

Log in

Confined muonic hydrogen-like atoms

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A muonic hydrogen-like atom is formed when replacing the electron in it by a negative muon \(\mu ^-\). The Schrödinger equation corresponds to the one of the atoms with a binding particle \((\mu ^-)\) with mass \(M_{\mu } \approx 207m_e\), where \(m_e\) is the electron mass. The muon, in comparison with the electron, moves along an orbit which remains much closer to the nucleus and the associated binding energy is considerably increased. In this report, we have studied how the ground state energy changes for H, \(He^{+}\) and \(Li^{+2}\) muonic atoms when subjected to very high compression. In order to simulate such a compression regime for the atoms, we have considered two confinement models: In the first, we assume for each system a nuclear point mass, whereas in the second the nucleus consists of a finite volume with a uniformly distributed charge. The energy correction due to the nucleus finite size is carried out at first-order perturbation theory. We found that the maximum of the energy correction becomes more important as the confinement and mass number of the atom nucleus grow.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data used in this work were generated by the authors and are available on request.]

References

  1. R. Pohl, A. Antognini, F.D. Amaro, F. Biraben, Ann. der Phys. 525(8–9), 647 (2013)

    Article  ADS  Google Scholar 

  2. R. Pohl, et. al., arXiv:1609.03440v1 [physics.atom-ph], (2016)

  3. R. Pohl et al., Science 353, 669 (2016). https://doi.org/10.1126/science.aaf2468

    Article  ADS  Google Scholar 

  4. U.D. Jentschura, A. Matveev, C.G. Parthey, J. Alnis, R. Pohl, Th Udem, N. Kolachevsky, T.W. Hänsch, Phys. Rev. A 83, 042505 (2011). https://doi.org/10.1103/PhysRevA.83.042505

    Article  ADS  Google Scholar 

  5. H. Urey, F. Brickwedde, G. Murphy, Phys. Rev. 39, 164–165 (1932)

    Article  ADS  Google Scholar 

  6. N. Aquino, R.A. Rojas, H.E. Montgomery Jr., Rev. Mex. Fís. 64, 399 (2018). https://doi.org/10.31349/RevMexFis.64.399

    Article  Google Scholar 

  7. A. Michels, J. De Boer et al., Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  8. F.M. Fernández, E. Castro, Kinam 4, 193 (1982)

    Google Scholar 

  9. P.O. Fröman, S. Yngve, N. Fröman, J. Math. Phys. 28, 1813 (1987). https://doi.org/10.1063/1.527441

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Jaskólski, Phys. Rep. 271(1), 1 (1996). https://doi.org/10.1016/0370-1573(95)00070-4

    Article  ADS  Google Scholar 

  11. J.P. Connerade, V.H. Dolmatov, P.A. Lakshmi, J. Phys. B 33, 251 (2000). https://doi.org/10.1088/0953-4075/33/2/310

    Article  ADS  Google Scholar 

  12. A.L. Buchachenko, J. Phys. Chem. A 105, 5839 (2001). https://doi.org/10.1021/jp003852u

    Article  Google Scholar 

  13. N. Aquino, Adv. Quantum Chem. 57, 124 (2009). https://doi.org/10.1016/S0065-3276(09)00608-X

    Article  ADS  Google Scholar 

  14. J.R. Sabin, E. Brändas, S.A. Cruz, Int. J. Quantum Chem. 12, 81 (1977)

    Google Scholar 

  15. K.D. Sen, Electronic structure of quantum confined atoms and molecules (Springer, Switzerland, 2014), pp. 1–253

    Book  Google Scholar 

  16. N. Aquino, V.D. Granados, H. Yee-Madeira, Rev. Mex. Fis. 55, 125 (2009)

    Google Scholar 

  17. A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938)

    Article  Google Scholar 

  18. E. Ley-Koo, S. Rubinstein, J. Chem. Phys. 71, 351 (1979). https://doi.org/10.1063/1.438077

    Article  ADS  Google Scholar 

  19. R. Vargas, J. Garza, A. Vela, Phys. Rev. E. 53, 3949 (1998). https://doi.org/10.1103/PhysRevE.58.3949

    Article  Google Scholar 

  20. N. Aquino, Int. J. Quantum Chem. 54, 107 (1995). https://doi.org/10.1002/qua.560540206

    Article  Google Scholar 

  21. N. Aquino, G. Campoy, H.E. Montgomery, Int. J. Quantum Chem. 107, 1548 (2007). https://doi.org/10.1002/qua.21313

    Article  ADS  Google Scholar 

  22. K.D. Sen, V.I. Pupyshev, H.E. Montgomery Jr., Adv. Quantum Chem. 57, 25 (2009). https://doi.org/10.1016/S0065-3276(09)00606-6

    Article  ADS  Google Scholar 

  23. E. Ley-Koo, Adv. Quantum Chem. 57, 79 (2009). https://doi.org/10.1016/S0065-3276(09)00607-8

    Article  ADS  Google Scholar 

  24. J. Hernández-Rojas, J. Bretón, J.M. Gómez-Llorente, J. Chem. Phys. 104, 1179 (1996). https://doi.org/10.1063/1.470778

    Article  ADS  Google Scholar 

  25. N. Aquino, V. Granados, H. Yee-Madeira, Rev. Méx. Fís. 55, 125 (2009)

    Google Scholar 

  26. D. Munjal, P. Silotia, V. Prasad, Phys. Plasmas 24, 122118 (2017)

    Article  ADS  Google Scholar 

  27. J.P. Connerade, P. Kengkan, In: Proceedings of Idea-Finding Symposium, Frankfurt Institute for Advanced Studies, Frankfurt, Germany, 2003 (pp. 35–46)

  28. J.P. Connerade, V.K. Dolmatov, J. Phys. B At. Mol. Opt. Phys. 48, 069501 (2015). https://doi.org/10.1088/0953-4075/48/1/015007

    Article  Google Scholar 

  29. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gob/Release1.0.16of 2020-12-15, F. W. J. Olver et al., eds, Section 13

  30. E. Ley-Koo, E. Castaño, D. Finotello, E. Nahmad-Achar, S. Ulloa, Am. J. Phys. 48, 949–953 (1980). https://doi.org/10.1119/1.12365

    Article  ADS  Google Scholar 

  31. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, vol. II (Wiley, New York, 1977), p. 1141

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for the helpful comments of two anonymous referees. NA, AFR, and JFRS are thankful for financial support provided by Sistema Nacional de Investigadores (SNI, Mexico).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally in the preparation of the manuscript.

Corresponding author

Correspondence to N. Aquino.

Additional information

This work is dedicated to the memory of Dr. Germán Campoy (1947–2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, R.A., Aquino, N., Flores-Riveros, A. et al. Confined muonic hydrogen-like atoms. Eur. Phys. J. D 75, 116 (2021). https://doi.org/10.1140/epjd/s10053-021-00122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00122-7

Navigation