Skip to main content
Log in

Full polarization states modulating via an ultra-thin quarter-wave plate

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically and numerically demonstrate a design of an ultra-thin quarter-wave plate (QWP) based on plasmonic metasurface. With the designed QWP, the ellipticity of the output light can be generalized as X \(=\) 2sin(\(\theta )\)cos(\(\theta )\), providing a convenient way to calculate the polarization states of the output light. With such a strategy, output lights with any desired polarization states including linear, circular and especially elliptical can be obtained by adjusting the incident polarization angle \(\theta \). The Jones vector is adopted to theoretically explore the underlying physics of polarization conversion. Moreover, the finite-difference time-domain (FDTD) simulations are utilized to verify the theoretical results. These results will deepen our understanding of polarization conversion and provide helpful guidelines in designing ultra-thin polarization-dependent devices.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All data included in this manuscript are available upon request by contacting with corresponding author.]

References

  1. N.K. Grady, J.E. Heyes, D.R. Chowdhury et al., Science 340, 6138 (2013)

    Article  Google Scholar 

  2. J. Hao, Y. Yuan, L. Ran et al., Phys. Rev. Lett. 99, 6 (2007)

    Google Scholar 

  3. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  4. N. Yu, P. Genevet, M.A. Kats et al., Science 334, 6054 (2011)

    Article  Google Scholar 

  5. X. Shang, X. Zhai, J. Yue et al., Opt. Express 25, 13 (2017)

    ADS  Google Scholar 

  6. S. Xiao, T. Wang, T. Liu et al., J. Phys. D Appl. Phys. 53, 503002 (2020)

    Article  Google Scholar 

  7. N. Yu, F. Capasso, Nat. Mater. 13, 2 (2014)

    Google Scholar 

  8. X. Chen, L. Huang, H. Mühlenbernd et al., Nat. Commun. 3, 1198 (2012)

    Article  ADS  Google Scholar 

  9. W. Wang, Z. Guo, R. Li et al., Opt. Express 23, 13 (2015)

    Article  ADS  Google Scholar 

  10. M. Khorasaninejad, W.T. Chen, R.C. Devlin et al., Science 352, 6290 (2016)

    Article  Google Scholar 

  11. M. Khorasaninejad, W.T. Chen, J. Oh et al., Nano Lett. 16, 6 (2016)

    ADS  Google Scholar 

  12. F. Aieta, M.A. Kats, P. Genevet et al., Science 347, 6228 (2015)

    Article  Google Scholar 

  13. L. Huang, X. Chen, H. Mühlenbernd et al., Nat. Commun. 4, 2808 (2013)

    Article  ADS  Google Scholar 

  14. W.T. Chen, K.Y. Yang, C.M. Wang et al., Nano Lett. 14, 1 (2013)

    Google Scholar 

  15. X. Ni, A.V. Kildishev, V.M. Shalaev, Nat. Commun. 4, 2807 (2013)

    Article  ADS  Google Scholar 

  16. D. Wintz, P. Genevet, A. Ambrosio et al., Nano Lett. 15, 5 (2015)

    Article  Google Scholar 

  17. Y. Yang, W. Wang, P. Moitra et al., Nano Lett. 14, 3 (2014)

    Google Scholar 

  18. M.I. Shalaev, J. Sun, A. Tsukernik et al., Nano Lett. 15, 9 (2015)

    Article  Google Scholar 

  19. Z. Li, J. Hao, L. Huang et al., Opt. Express 24, 8 (2016)

    Google Scholar 

  20. M.Q. Mehmood, S. Mei, S. Hussain et al., Adv. Mater. 28, 13 (2016)

    Article  Google Scholar 

  21. F. Yue, D. Wen, J. Xin et al., ACS Photon. 3, 9 (2016)

    Article  Google Scholar 

  22. D. Wang, L. Zhang, Y. Gu et al., Sci. Rep. 5, 15020 (2015)

    Article  ADS  Google Scholar 

  23. Y. Zhao, A. Alù, Nano Lett. 13, 3 (2013)

    Google Scholar 

  24. J. Kim, S. Choudhury, C. DeVault et al., ACS Nano 10, 10 (2016)

    Google Scholar 

  25. Y. Zhao, A. Alù, Phys. Rev. B 84, 20 (2011)

    Google Scholar 

  26. N. Yu, F. Aieta, P. Genevet et al., Nano Lett. 12, 12 (2012)

    Google Scholar 

  27. F. Ding, Z. Wang, S. He et al., ACS Nano 9, 4 (2015)

    Google Scholar 

  28. S. Kruk, B. Hopkins, I.I. Kravchenko et al., APL Photon. 1, 3 (2016)

  29. J.P.B. Mueller, N.A. Rubin, R.C. Devlin et al., Phys. Rev. Lett. 118, 11 (2017)

    Google Scholar 

  30. A. Djalalian-Assl, J.J. Cadusch, E. Balaur et al., Opt. Lett. 41, 13 (2016)

    Article  Google Scholar 

  31. D. Wen, F. Yue, G. Li et al., Nat. Commun. 6, 8241 (2015)

    Article  ADS  Google Scholar 

  32. E. Hecht, Optics (Addison Wesley, London, 2002)

    Google Scholar 

  33. F. Gori, Opt. Lett. 24, 9 (1999)

    Article  Google Scholar 

  34. Z. Liu, S. Chen, J. Li et al., Opt. Lett. 39, 23 (2014)

    Google Scholar 

  35. P. Yu, J. Li, C. Tang et al., Light Sci Appl 5, 7 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan province under Grant Nos. 2020JJ5565, 2020JJ5601; Open Research Fund of Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering (No. 201910); Scientific Research Project of Education Department of Hunan Province (Nos. 18C0204, 18C0214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongjun Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, S., Shang, X., He, H. et al. Full polarization states modulating via an ultra-thin quarter-wave plate. Eur. Phys. J. D 75, 87 (2021). https://doi.org/10.1140/epjd/s10053-021-00104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00104-9

Navigation