Skip to main content

Advertisement

Log in

Dynamics of fullerenes confined in nanotube: Temperature-modulated Raman scattering and X-ray diffraction studies

  • Regular Article - Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ultrathin channel in nanotube is an exciting host to encapsulate sub-nanometer size guest spices. The dynamics of confined \(\hbox {C}_{\mathrm {60}}\hbox {s}\) inside the nanoscale host tube have been investigated by various stimuli like e-beam irradiation, Ar-ion laser and Cu \(\hbox {K}_{\upalpha }\) X-ray. It has been disclosed that the accelerating voltage of TEM higher than the threshold energies of the ballistic knockoff in carbon atoms can be used to understand the rotation of host species in the confined geometry. The radial breathing Raman mode of host SWCNTs has been studied to insight into the enhanced mobility of guest \(\hbox {C}_{\mathrm {60}}\hbox {s}\) at higher temperatures in the confined tube geometry of nanopeapod. We have highlighted the role of temperature as a function of kinetic energy of the confined \(\hbox {C}_{\mathrm {60}}\hbox {s}\) in SWCNTs and which leads to the reduction of stress in host–guest complex. The temperature-dependent XRD has been used to study the mobilities of \(\hbox {C}_{\mathrm {60}}\) molecules adsorbed onto the SWCNTs to move along the tube walls until they detect an opening to infuse in the confined space

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Author’s comment: All required data submitted in supplementary information.]

References

  1. J. Gao, P. Blondeau, P. Salice, E. Menna, B. Bártová, C. Hébert, J. Leschner, U. Kaiser, M. Milko, C.A. Draxl, M.A. Loi, Small 7, 1807 (2011)

    Article  Google Scholar 

  2. T. Pichler, X. Liu, M. Knupfer, J. Fink, New J. Phys. 5, 156 (2003)

    Article  ADS  Google Scholar 

  3. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Article  Google Scholar 

  4. A. Goel, J.B. Howard, J.B. VanderSande, Carbon 42, 1907 (2004)

    Article  Google Scholar 

  5. B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer, Chem. Phys. Lett. 310, 21 (1999)

    Article  ADS  Google Scholar 

  6. H. Ulbricht, G. Moos, T. Hertel, Phys. Rev. Lett. 90, 095501 (2003)

    Article  ADS  Google Scholar 

  7. H. Ulbricht, T. Hertel, J. Phys. Chem. B 107, 14185 (2003)

    Article  Google Scholar 

  8. A.N. Khlobystov, R. Scipioni, D. Nguyen-Manh, D.A. Britz, D.G. Pettifor, G.A.D. Briggs, S.G. Lyapin, A. Ardavan, R.J. Nicholas, Appl. Phys. Lett. 84, 792 (2004)

    Article  ADS  Google Scholar 

  9. A.N. Khlobystov, K. Porfyrakis, M. Kanai, D.A. Britz, A. Ardavan, T.J.S. Dennis, G.A.D. Briggs, Angew. Chem. Int. Ed. 43, 1386 (2004)

    Article  Google Scholar 

  10. M.D. Halls, H.B. Schlegel, J. Phys. Chem. B 106, 1921 (2002)

    Article  Google Scholar 

  11. M. Yudasaka, K. Ajima, K. Suenaga, T. Ichihashi, A. Hashimoto, S. Iijima, Chem. Phys. Lett. 380, 42 (2003)

    Article  ADS  Google Scholar 

  12. Z. Yao, J. Zhang, M.G. Yao, S.L. Chen, B.B. Liu, J. Phys. Chem. C 120, 23189 (2016)

    Article  Google Scholar 

  13. X.G. Yang, M.G. Yao, X.Y. Wu, S.J. Liu, S.L. Chen, K. Yang, R. Liu, T. Cui, B. Sundqvist, B.B. Liu, Phys. Rev. Lett. 118, 245701 (2017)

    Article  ADS  Google Scholar 

  14. Y. Zou, B. Liu, L. Wang, D. Liu, S. Yu, P. Wang, T. Wang, M. Yao, Q. Li, B. Zou, T. Cui, G. Zou, T. Wågberg, B. Sundqvist, H.K. Mao, Proc. Natl. Acad. Sci. 106, 22135 (2009)

    Article  ADS  Google Scholar 

  15. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115, 4744 (2015)

    Article  Google Scholar 

  16. H. Kataura, Y. Maniwa, M. Abe, A. Fujiwara, T. Kodama, K. Kikuchi, H. Imahori, Y. Misaki, S. Suzuki, Y. Achiba, Appl. Phys. A: Mater. Sci. Proc. 74, 349 (2002)

    Article  ADS  Google Scholar 

  17. P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. Denenstein, J.P. McCauley Jr., A.B. Smith, D.E. Cox, Phys. Rev. Lett. 66, 2911 (1991)

    Article  ADS  Google Scholar 

  18. S. Sato, T. Yamasaki, H. Isobe, Proc. Natl. Acad. Sci. 111, 8374 (2014)

    Article  ADS  Google Scholar 

  19. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima, Chem. Phys. Lett. 337, 48 (2001)

    Article  ADS  Google Scholar 

  20. R. Marega, G. Accorsi, M. Meneghetti, A. Parisini, M. Prato, D. Bonifazi, Carbon 47, 675 (2009)

    Article  Google Scholar 

  21. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, W. Krätschmer, Synthetic Met. 121, 1195 (2001)

    Article  Google Scholar 

  22. T. Okazaki, in Preparation and properties of carbon nanopeapods, 2nd edn., ed. by K. Tanaka, S. Iijima (Elsevier, Amsterdam, 2014)

    Google Scholar 

  23. T. Frohlich, P. Scharff, W. Schliefke, H. Romanus, V. Gupta, C. Siegmund, O. Ambacher, L. Spiess, Carbon 42, 2759 (2004)

    Article  Google Scholar 

  24. H. Guo, C. Wang, K. Miyazawa, H. Wang, H. Masuda, D. Fujita, Sci. Rep. 6, 38760 (2016)

    Article  ADS  Google Scholar 

  25. N. Tiwari, N. Pandey, D. Roy, K. Mukhopadhyay, N Eswara Prasad. Nanotechnology 27, 205604 (2016)

    Article  ADS  Google Scholar 

  26. F.F. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Korecz, F. Fülöp, A. Janossy, Chem. Phys. Lett. 383, 362 (2004)

    Article  ADS  Google Scholar 

  27. B.W. Smith, D.E. Luzzi, J. Appl. Phys. 90, 3509 (2001)

    Article  ADS  Google Scholar 

  28. M. Yoon, S. Berber, D. Tománek, Phys. Rev. B. 71, 55406 (2005)

    Google Scholar 

  29. F. Ding, Z. Xu, B.I. Yakobson, R.J. Young, I.A. Kinloch, S. Cui, L. Deng, P. Puech, M. Monthioux, Phys. Rev. B. 82, 041403 (2010)

    Article  ADS  Google Scholar 

  30. R. Pfeiffer, M. Holzweber, H. Peterlik, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Nano Lett. 7, 2428 (2007)

    Article  ADS  Google Scholar 

  31. D. Roy, S. Kanojia, K. Mukhopadhyay, N. Eswara Prasad, Bull. Mater. Sci. 44, 31 (2021)

  32. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens. Matter Phys. 1, 89 (2010)

    Article  ADS  Google Scholar 

  33. S. Bandow, T. Hiraoka, T. Yumura, K. Hirahara, H. Shinohara, S. Iijima, Chem. Phys. Lett. 384, 320 (2004)

    Article  ADS  Google Scholar 

  34. S. Gupta, A. Saxena, J. Raman Spectrosc. 40, 1127 (2009)

    Article  ADS  Google Scholar 

  35. P.M. Rafailov, C. Thomsen, H. Kataura, Phys. Rev. B 68, 193411 (2003)

    Article  ADS  Google Scholar 

  36. K. Ran, X. Mi, Z.J. Shi, Q. Chen, Y.F. Shi, J.M. Zuo, CARBON 50, 5450 (2012)

    Article  Google Scholar 

  37. K. Urita, K. Suenaga, T. Sugai, H. Shinohara, S. Iijima, Phys. Rev. Lett. 94, 155501 (2005)

    Article  ADS  Google Scholar 

  38. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, S. Iijima, S. Suzuki, W. Krätschmer, Y. Achiba, AIP Conf. Proc. 591, 251 (2001)

    Article  ADS  Google Scholar 

  39. S. Bandow, M. Takizawa, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, Chem. Phys. Lett. 347, 23 (2001)

    Article  ADS  Google Scholar 

  40. P.V. Teredesai, A.K. Sood, S.M. Sharma, S. Karmakar, S.K. Sikka, A. Govindaraj, C.N.R. Rao, Phys. Status Solidi B 223, 479 (2001)

    Article  ADS  Google Scholar 

  41. M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba, K. Kato, M. Takata, A. Fujiwara, K. Matsuda, Y. Maniwa, Phys. Rev. B 68, 041405 (2003)

    Article  ADS  Google Scholar 

  42. Y. Maniwa, Y. Kumazawa, Y. Saito, H. Tou, H. Kataura, H. Ishii, S. Suzuki, Y. Achiba, A. Fujiwara, H. Suematsu, Jpn J Appl Phys 38, 668 (1999)

    Article  ADS  Google Scholar 

  43. B.W. Smith, D.E. Luzzi, Chem. Phys. Lett. 321, 169 (2000)

    Article  ADS  Google Scholar 

  44. B.M. Ginzburg, S. Tuœchiev, S. Tabarov, A.A. Shepelevskiœ, L.A. Shibaev, Tech. Phys. 50, 1458 (2005)

    Article  Google Scholar 

  45. T. Itoh, S. Nitta, S. Nonomura, Appl. Surf. Sci. 113, 282 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge help of Advanced Imaging Centre, IIT, Kanpur, for TEM analysis. Authors gratefully acknowledged the help of Dr Kavita Agarwal for extending characterization facilities. Authors thank the Central Glass Blowing Section, IIT, Kanpur, for sealing the nanotubes and fullerenes in quartz tubes under vacuum. The authors also thank Dr Kingsuk Mukhopadhyay, DMSRDE, for fruitful discussion and many suggestions. Authors acknowledge the help and support of the scientists, research scholars and the staff members of Directorate of Nanomaterials and Technologies, DMSRDE, Kanpur, for the experimentation, characterizations and suggestions. The authors are grateful to the Director, DMSRDE, Kanpur, for help, support, guidance and permission to publish our experimental findings.

Author information

Authors and Affiliations

Authors

Contributions

DR conceptualized and designed the research; UKT and SD have been supervised and carried out the experiments; acquisition of data was carried out by SK and SS; and SD, SS, SK, UKT, DR and NEP analyzed, interpreted the data, drafted and finalised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debmalya Roy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2963 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Singh, S., Kanojia, S. et al. Dynamics of fullerenes confined in nanotube: Temperature-modulated Raman scattering and X-ray diffraction studies. Eur. Phys. J. D 75, 81 (2021). https://doi.org/10.1140/epjd/s10053-021-00099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00099-3

Navigation