Skip to main content
Log in

Confined orbitals in fullerenes and quantum dots calculated by analytic continuation method

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Schrödinger equation with a Gaussian potential to model a confined system as a quantum dot or a hydrogen atom inside a fullerene is solved by using the analytic continuation method. The use of the Rodrigues formula allows us to obtain in an easy way the coefficients of the power series expansion of the Gaussian potential in terms of the Hermite polynomials. Recurrence formulas have been obtained for the series of the states of one electron confined by that potential. This method is simpler and computationally more efficient than others employed to model quantum dots using Gaussian potentials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data appearing in the paper are those relevant for the results presented. No further data have been produced.]

References

  1. M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Physica E 15, 261 (2002)

    Article  ADS  Google Scholar 

  2. B. Buck, H. Friedrich, C. Wheatley, Nucl. Phys. A 275, 246 (1977)

    Article  ADS  Google Scholar 

  3. G. Stephenson, J. Phys. A: Math. Gen. 10, L229 (1977)

    Article  ADS  Google Scholar 

  4. N. Bessis, G. Bessis, B. Joulakian, J. Phys. A: Math. Gen. 15, 3679 (1982)

    Article  ADS  Google Scholar 

  5. R.E. Crandall, J. Phys. A: Math. Gen. 16, L395 (1983)

    Article  ADS  Google Scholar 

  6. C.S. Lai, J. Phys. A: Math. Theor. 16, 181 (1983)

    Article  ADS  Google Scholar 

  7. J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Phys. Rev. B 62, 4234 (2000)

    Article  ADS  Google Scholar 

  8. J.R. Chelikowsky, N. Troullier, K. Wu, Y. Saad, Phys. Rev. B 50, 11355 (1994)

    Article  ADS  Google Scholar 

  9. X.F. Bai, W. Xin, X.X. Liu, Eur. Phys. J. Plus 135, 321 (2020)

    Article  Google Scholar 

  10. A. Bera, M. Ghosh, J. Alloys Compd. 695, 3054 (2017)

    Article  Google Scholar 

  11. H. Sari, E. Kasapoglu, S. Sakiroglu, I. Skmen, C.A. Duque, Philos. Mag. 100, 619 (2020)

    Article  ADS  Google Scholar 

  12. G.T. Tedondje, A.J. Fotue, S.C. Kenfack, M.F.C. Fobasso, F. Fotio, L.C. Fai, Eur. Phys. J. Plus 135, 244 (2020)

    Article  Google Scholar 

  13. E.M. Nascimiento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B: At. Mol. Opt. Phys. 44, 015003 (2011)

    Article  ADS  Google Scholar 

  14. A. Boda, A. Chatterjee, Physica E 45, 36 (2012)

    Article  ADS  Google Scholar 

  15. I. Al-Hayek, A. Sandouqa, Superlattices Microstruct. 85, 216 (2015)

    Article  ADS  Google Scholar 

  16. H. Mutuk, Pramana J. Phys. 92, 66 (2019)

    Article  ADS  Google Scholar 

  17. A. Holubec, A.D. Stauffer, J. Phys. A: Math. Theor. 18, 2141 (1985)

    Article  ADS  Google Scholar 

  18. R.J.W. Hodgson, J. Phys. A: Math. Theor. 21, 679 (1988)

    Article  ADS  Google Scholar 

  19. A. Holubec, A.D. Stauffer, P. Acacia, J.A. Stauffer, J. Phys. A: Math. Theor. 23, 4081 (1990)

    Article  ADS  Google Scholar 

  20. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions, 9th edn. (Dover Publications, Inc., New York, 1972)

  21. H.A. Bethe, E.W. Sapleter, Quantum Mechanics of One and Two Electron Atoms (Springer, Berlin, 1957)

    Book  Google Scholar 

  22. M.F. Morcillo, J.M. Alcaraz-Pelegrina, A. Sarsa, Int. J. Quantum Chem. 118, e25563 (2018)

    Article  Google Scholar 

  23. M.F. Morcillo, J.M. Alcaraz-Pelegrina, A. Sarsa, Mol. Phys. 117:13, 1621 (2019)

    Article  Google Scholar 

  24. J. Sabin, E. Brändas, S. Cruz (eds.), Theory of Confined Quantum Systems, vol. 57–58 (Elsevier, Oxford, 2009)

  25. Y.B. Xu, M.Q. Tan, U. Becker, Phys. Rev. Lett. 76, 3538 (1996)

    Article  ADS  Google Scholar 

  26. S.S. Gomez, R.H. Romero, Cent. Eur. J. Phys. 7, 12 (2009)

    Google Scholar 

  27. C. Martínez-Flores, R. Cabrera-Trujillo, J. Phys. B: At. Mol. Opt. Phys. 51, 055203 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Junta de Andalucía under grant FQM378 and the Universidad de Córdoba under a grant from the program “Plan Propio de Investigación 2019”. M.F.M.A. acknowledges partial support by a Ph.D fellowship from the Spanish Ministerio de Universidades under grant FPU16/05950.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Antonio J. Sarsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morcillo-Arencibia, M.F., Alcaraz-Pelegrina, J.M. & Sarsa, A.J. Confined orbitals in fullerenes and quantum dots calculated by analytic continuation method. Eur. Phys. J. D 75, 109 (2021). https://doi.org/10.1140/epjd/s10053-021-00096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00096-6

Navigation