Skip to main content
Log in

Quantum phase transition in symmetric quantum three-body system

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Bound state energy (E) and the position (\(E_r\)) and width (\(\Gamma \)) of the first S symmetry doubly excited Feshbach resonance state of various symmetrical three-body systems (XYY) bound via screened Coulomb (SC) interaction have been reported using soft-wall strategy of stabilization method. Explicitly correlated multi-exponent Hylleraas-type basis set has been considered under the Ritz variational framework. Critical nuclear charges of the systems in its ground state (\(Z_c\)) as well as in Feshbach resonance state (\({\mathcal {Z}}_c\)) for various screening parameters (\(\lambda \)) have been evaluated. First-order quantum phase transition (QPT) for all the systems has been reported in its ground state. Effect of different mass combination of the constituents particles on critical points of the systems has been explored extensively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: The data is already given in the manuscript.]

References

  1. J.W. Gibbs, Elementary Principles of Statistical Mechanics (Charles Scribners Sons, New York, 1902)

    MATH  Google Scholar 

  2. R. Nicolas, S. Florens, V. Bouchiat, W. Wernsdorfer, F. Balestro, Nature 453, 633 (2008)

    Article  ADS  Google Scholar 

  3. S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997)

    Article  ADS  Google Scholar 

  4. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  5. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.D. Lin, L.M. Duan, C.C.J. Wang, J.K. Freericks, C. Monroe, Nat. Commun. 2, 377 (2011)

    Article  ADS  Google Scholar 

  6. D.B. Haviland, Y. Liu, A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)

    Article  ADS  Google Scholar 

  7. H.S.J. van der Zant, F.C. Fritschy, W.E. Elion, L.J. Geerligs, J.E. Mooij, Phys. Rev. Lett. 69, 2971 (1992)

    Article  ADS  Google Scholar 

  8. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  9. G. Shi-Jian, H.-Q. Lin, Y..-Q. Li, Phys. Rev. A 68, 042330 (2003)

    Article  ADS  Google Scholar 

  10. G. Shi-Jian, S..-S.. Deng, Y..-Q.. Li, H..-Q.. Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  11. J. Vidal, G. Palacios, R. Mosseri, Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  12. P. Serra, S. Kais, Phys. Rev. Lett. 77, 466 (1996)

    Article  ADS  Google Scholar 

  13. F.H. Stillinger Jr., J. Chem. Phys. 45, 3623 (1963)

    Article  ADS  Google Scholar 

  14. J. Midtdal, Phys. Rev. A 138, 1010 (1965)

    Article  ADS  Google Scholar 

  15. F.H. Stillinger, D.K. Stillinger, Phys. Rev. A 10, 1109 (1974)

    Article  ADS  Google Scholar 

  16. F.H. Stillinger, T.A. Weber, Phys. Rev. A 10, 1122 (1974)

    Article  ADS  Google Scholar 

  17. W.P. Reinhardt, Phys. Rev. A 15, 802 (1977)

    Article  ADS  Google Scholar 

  18. M.H. Ostenhof, T.H. Ostenhof, B. Simon, J. Phys. A 16, 1125 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.D. Baker, D.E. Freund, R.N. Hill, J.D. Morgan, Phys. Rev. A 41, 1247 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. I.A. Ivanov, Phys. Rev. A 51, 1080 (1995)

    Article  ADS  Google Scholar 

  21. J. Zamastil, J. Cizek, L. Skala, M. Simanek, Phys. Rev. A 81, 032118 (2010)

    Article  ADS  Google Scholar 

  22. N. Guevara, A.V. Turbiner, Phys. Rev. A 84, 064501 (2011)

    Article  ADS  Google Scholar 

  23. C.S. Estienne, M. Busuttil, A. Moini, G.W.F. Drake, Phys. Rev. Lett. 112, 173001 (2014)

    Article  ADS  Google Scholar 

  24. H.O. Pilon, A.V. Turbiner, Phys. Lett. A 379, 688 (2015)

    Article  MathSciNet  Google Scholar 

  25. A.W. King, L.C. Rhodes, C.A. Readman, H. Cox, Phys. Rev. A 91, 042512 (2015)

    Article  ADS  Google Scholar 

  26. S. Kais, Q. Shi, Phys. Rev. A 62, 060502(R) (2000)

    Article  ADS  Google Scholar 

  27. A. Sadhukhan, S. Dutta, J.K. Saha, Int. J. Quantum Chem. 119, e26042 (2019)

    Article  Google Scholar 

  28. A. Sadhukhan, S. Dutta, J.K. Saha, Eur. Phys. J. D 73, 250 (2019)

    Article  ADS  Google Scholar 

  29. J.K. Saha, T.K. Mukherjee, Phys. Rev. A 80(2), 022513 (2009)

    Article  ADS  Google Scholar 

  30. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, J. Chem. Phys. 132(13), 134107 (2010)

    Article  ADS  Google Scholar 

  31. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, P.K. Mukherjee, Int. J. Quantum Chem. 111(7–8), 1819 (2010)

    Google Scholar 

  32. J..K. Saha, T.K. Mukherjee, Phys. Rev. A 82(3), 036502 (2010)

    Article  ADS  Google Scholar 

  33. J..K. Saha, S. Bhattacharyya, T..K. Mukherjee, Int. Rev. Atomic Molecul. Phys. 3(1), 1 (2012)

    Google Scholar 

  34. S. Kasthurirangan, J.K. Saha, A. Agnihotri, S. Bhattacharyya, D. Misra, A. Kumar, P.K. Mukherjee, J.P. Santos, A.M. Costa, P. Indelicato, T.K. Mukherjee, L.C. Tribedi, Phys. Rev. Lett. 111(24), 243201 (2013)

    Article  ADS  Google Scholar 

  35. S. Dutta, A.N. Sil, J.K. Saha, T.K. Mukherjee, Int. J. Quantum Chem. 119(18), e25981 (2019)

    Article  Google Scholar 

  36. P. Debye, E. Huckel, Phys. Z. 24, 185 (1923)

    Google Scholar 

  37. S. Dutta, J.K. Saha, S. Bhattacharyya, P.K. Mukherjee, T.K. Mukherjee, Phys. Scr. 89, 015401 (2014)

    Article  ADS  Google Scholar 

  38. J.L. Calais, P.O. Lowdin, J. Mol. Spec. 8, 203 (1962)

    Article  ADS  Google Scholar 

  39. S. Kar, Y..-S.. Wang, Y. Wang, Y.K. Ho, Atoms 7, 53 (2019)

    Article  ADS  Google Scholar 

  40. H.E. Montgomery Jr., K.D. Sen, J. Katriel, Phys. Rev. A 97, 022503 (2018)

    Article  ADS  Google Scholar 

  41. A. Sadhukhan, S.K. Nayek, J.K. Saha, Eur. Phys. J. D 74, 210 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JKS acknowledges the partial financial support from the Department of Science and Technology, Govt. of West Bengal, under grant number 249(Sanc.)/ST/P/S & T/16G-26/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta K. Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, A., Mondal, S., Nayek, S.K. et al. Quantum phase transition in symmetric quantum three-body system. Eur. Phys. J. D 75, 77 (2021). https://doi.org/10.1140/epjd/s10053-021-00084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00084-w

Navigation