Skip to main content
Log in

Confined H\(^-\) ion within a density functional framework

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Ground and excited states of a confined negative hydrogen ion have been pursued under Kohn–Sham density functional approach by invoking a physically motivated work-function-based exchange potential. The exchange-only results are of near Hartree–Fock quality. Local parameterized Wigner-type, and gradient- and Laplacian-dependent non-local Lee–Yang–Parr functionals are chosen to investigate the electron correlation effects. Eigenfunctions and eigenvalues are extracted by using a generalized pseudospectral method obeying Dirichlet boundary condition. Energy values are reported for 1s\(^{2}\) (\(^{1}\)S), 1s2s (\(^{3,1}\)S) and 1s2p (\(^{3,1}\)P) states. The performance of the correlation functionals in the context of confinement is examined critically. The present results are in excellent agreement with the available literature. Additionally, Shannon entropy and Onicescu energy are offered for ground and low-lying singly excited 1s2s (\(^{3}\)S) and 1s2p (\(^{3}\)P) states. The influence of electron correlation is more predominant in the weaker confinement limit, and it decays with an increase in confinement strength. In essence, energy and some information measures are estimated using a newly formulated density functional strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Authors can confirm that all relevant data are included in the article.]

References

  1. A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  2. A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938)

    Article  Google Scholar 

  3. C. Laughlin, S.I. Chu, J. Phys. A 42, 265004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Sabin, E. Brändas, S. Cruz (eds.), Adv. Quant. Chem., vol. 57 and 58 (Academic Press, New York, 2009)

    Google Scholar 

  5. A. Flores-Riveros, N. Aquino, H.E. Montgomery Jr., Phys. Lett. A 374, 1246 (2010)

    Article  ADS  Google Scholar 

  6. Y. Yakar, B. Çakir, A. Özmen, Int. J. Quant. Chem. 111, 4139 (2011)

    Article  Google Scholar 

  7. H.E. Montgomery Jr., V.I. Pupyshev, Phys. Lett. A 377, 2880 (2013)

    Article  ADS  Google Scholar 

  8. S. Bhattacharyya, J.K. Saha, P.K. Mukherjee, T.K. Mukherjee, Phys. Scr. 87, 065305 (2013)

    Article  ADS  Google Scholar 

  9. K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Switzerland, 2014)

    MATH  Google Scholar 

  10. H.E. Montgomery Jr., V.I. Pupyshev, Theor. Chem. Acc. 134, 1598 (2015)

    Article  Google Scholar 

  11. J. Saha, S. Bhattacharyya, T.K. Mukherjee, Int. J. Quant. Chem. 116, 1802 (2016)

    Article  Google Scholar 

  12. F.J. Gálvez, E. Buendía, A. Sarsa, Int. J. Quant. Chem. 117, e25421 (2017)

    Article  Google Scholar 

  13. L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Int. J. Quant. Chem. 117, e25375 (2017)

    Article  Google Scholar 

  14. R. Chandra, B. Dutta, J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, Int. J. Quant. Chem. 118, e25597 (2018)

    Article  Google Scholar 

  15. W. Jaskólski, Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  16. E. Ley-Koo, Rev. Mex. Fís. 64, 326 (2018)

    Article  Google Scholar 

  17. S.J. Buckman, C.W. Clark, Rev. Mod. Phys. 66, 539 (1994)

    Article  ADS  Google Scholar 

  18. T.J. Miller, C. Walsh, T.A. Field, Chem. Rev. 117, 1765 (2017)

    Article  Google Scholar 

  19. C.L. Wilson, H.E. Montgomery Jr., K.D. Sen, D.C. Thompson, Phys. Lett. A 374, 4415 (2010)

    Article  ADS  Google Scholar 

  20. B.M. Gimarc, J. Chem. Phys. 47, 5110 (1967)

    Article  ADS  Google Scholar 

  21. C. Joslin, S. Goldman, J. Phys. B 25, 1965 (1992)

    Article  ADS  Google Scholar 

  22. C. Le Sech, A. Banerjee, J. Phys. B 44, 105003 (2011)

    Article  ADS  Google Scholar 

  23. A. Flores-Riveros, A. Rodríguez-Contreras, Phys. Lett. A 372, 6175 (2008)

    Article  ADS  Google Scholar 

  24. S. Ting-Yun, B. Cheng-Guang, L. Bai-Wen, Commun. Theor. Phys. 35, 195 (2001)

    Article  ADS  Google Scholar 

  25. K.D. Sen, J. Chem. Phys. 123, 074110 (2005)

    Article  ADS  Google Scholar 

  26. T. Sako, G.H.F. Diercksen, J. Phys. B 36, 1681 (2003)

    Article  ADS  Google Scholar 

  27. W.-F. Xie, Commun. Theor. Phys. 47, 1111 (2007)

    Article  ADS  Google Scholar 

  28. F. Holka, P. Neogrády, V. Kellö, M. Urban, G.H.F. Diercksen, Mol. Phys. 103, 2747 (2005)

    Article  ADS  Google Scholar 

  29. M. Chołuj, W. Bartkowiak, P. Nacikażek, K. Strasburger, J. Chem. Phys. 146, 194301 (2017)

    Article  ADS  Google Scholar 

  30. R.L. Melingui Melono, C .F. Lukong, O. Motapon, J. Phys. B 51, 205005 (2018)

    Article  ADS  Google Scholar 

  31. Li Zhang, P. Winkler, Int. J. Quant. Chem. 60, 1643 (1996)

    Article  Google Scholar 

  32. P. Winkler, Phys. Rev. E 53, 5517 (1996)

    Article  ADS  Google Scholar 

  33. S. Kar, Y.K. Ho, Phys. Rev. E 70, 066411 (2004)

    Article  ADS  Google Scholar 

  34. S. Kar, Y.K. Ho, New J. Phys. 7, 141 (2005)

    Article  ADS  Google Scholar 

  35. S. Kar, Y.K. Ho, Piers Online 3, 343 (2007)

    Article  Google Scholar 

  36. S. Kar, Y.K. Ho, Phys. Plasmas 15, 013301 (2008)

    Article  ADS  Google Scholar 

  37. S. Kar, Y.K. Ho, Phys. Lett. A 372, 4253 (2008)

    Article  ADS  Google Scholar 

  38. S. Kar, Y.K. Ho, Phys. Rev. A 80, 062511 (2009)

    Article  ADS  Google Scholar 

  39. S. Kar, Y.K. Ho, Phys. Rev. A 83, 042506 (2011)

    Article  ADS  Google Scholar 

  40. Y.K. Ho, S. Kar, Few-Body Syst. 53, 445 (2012)

    Article  ADS  Google Scholar 

  41. S. Kar, H.W. Li, P. Jiang, Phys. Plasmas 20, 083302 (2013)

    Article  ADS  Google Scholar 

  42. P. Jiang, S. Kar, Y. Zhou, Phys. Plasmas 20, 012126 (2013)

    Article  ADS  Google Scholar 

  43. L.G. Jiao, Y.K. Ho, J. Quant. Spectrosc. Radiat. Trans. 144, 27 (2014)

    Article  ADS  Google Scholar 

  44. S. Kar, Y.-S. Wang, Y. Wang, Y.K. Ho, Int. J. Quant. Chem. 118, e25515 (2017)

    Article  Google Scholar 

  45. S.B. Sears, R.G. Parr, U. Dinur, Israel J. Chem. 19, 165 (1980)

    Article  Google Scholar 

  46. E. Romera, J.S. Dehesa, J. Chem. Phys. 120, 8906 (2004)

    Article  ADS  Google Scholar 

  47. E. Romera, P. Sánchez-Morena, J.S. Dehesa, Chem. Phys. Lett. 414, 468 (2005)

    Article  ADS  Google Scholar 

  48. Á. Nagy, S.B. Liu, Phys. Lett. A 372, 1654 (2008)

    Article  ADS  Google Scholar 

  49. L.M. Ghiringhelli, L. Delle, R.A. Mosna, L.P. Hamilton, J. Math. Chem. 48, 78 (2010)

    Article  MathSciNet  Google Scholar 

  50. Á. Nagy, E. Romera, Chem. Phys. Lett. 597, 139 (2014)

    Article  ADS  Google Scholar 

  51. Á. Nagy, Int. J. Quant. Chem. 115, 1392 (2014)

    Article  Google Scholar 

  52. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119, 7030 (2003)

    Article  ADS  Google Scholar 

  53. N.L. Guevara, R.P. Sagar, R.Q. Esquivel, J. Chem. Phys. 122, 084101 (2005)

    Article  ADS  Google Scholar 

  54. ChC Moustakidis, S.E. Massen, Phys. Rev. B 71, 045102 (2005)

    Article  ADS  Google Scholar 

  55. N. Mukherjee, A.K. Roy, Int. J. Quant. Chem. 118, e25596 (2018)

    Article  Google Scholar 

  56. N. Mukherjee, A.K. Roy, Eur. Phys. J. D 72, 118 (2018)

    Article  ADS  Google Scholar 

  57. M.-A. Martínez-Sánchez, R. Vargas, J. Garza. Quant. Rep. 1, 208 (2019)

    Article  Google Scholar 

  58. S. Majumdar, A.K. Roy, Quant. Rep. 2, 189 (2020)

    Article  Google Scholar 

  59. J.-H. Ou, Y.K. Ho, Atoms 5, 15 (2017)

    Article  ADS  Google Scholar 

  60. J.-H. Ou, Y.K. Ho, Chem. Phys. Lett. 689, 116 (2017)

    Article  ADS  Google Scholar 

  61. A.K. Roy, R. Singh, B.M. Deb, J. Phys. B 30, 4763 (1997)

    Article  ADS  Google Scholar 

  62. A.K. Roy, R. Singh, B.M. Deb, Int. J. Quant. Chem. 65, 317 (1997)

    Article  Google Scholar 

  63. A.K. Roy, B.M. Deb, Phys. Lett. A 234, 465 (1997)

    Article  ADS  Google Scholar 

  64. A.K. Roy, S.I. Chu, Phys. Rev. A 65, 052508 (2002)

    Article  ADS  Google Scholar 

  65. A.K. Roy, J. Phys. B 37, 4369 (2004)

    Article  ADS  Google Scholar 

  66. A.K. Roy, J. Phys. B. 38, 1591 (2005)

    Article  ADS  Google Scholar 

  67. A.K. Roy, A.F. Jalbout, Chem. Phys. Lett. 445, 355 (2007)

    Article  ADS  Google Scholar 

  68. V. Sahni, M. Harbola, Int. J. Quant. Chem. Symp. 24, 569 (1990)

    Article  Google Scholar 

  69. V. Sahni, Y. Li, M. Harbola, Phys. Rev. A 45, 1434 (1992)

    Article  ADS  Google Scholar 

  70. G. Brual, S.M. Rothstein, J. Chem. Phys. 69, 1177 (1978)

    Article  ADS  Google Scholar 

  71. C. Lee, Y. Wang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  72. A.K. Roy, Phys. Lett. A 321, 231 (2004)

    Article  ADS  Google Scholar 

  73. A.K. Roy, J. Phys. G 30, 269 (2004)

    Article  ADS  Google Scholar 

  74. A.K. Roy, Pramana-J. Phys. 38, 2189 (2005)

    Google Scholar 

  75. A.K. Roy, Int. J. Quant. Chem. 104, 861 (2005)

    Article  ADS  Google Scholar 

  76. K.D. Sen, A.K. Roy, Phys. Lett. A 357, 112 (2006)

    Article  ADS  Google Scholar 

  77. A.K. Roy, Int. J. Quant. Chem. 115, 937 (2015)

    Article  Google Scholar 

  78. A.K. Roy, Int. J. Quant. Chem. 116, 953 (2016)

    Article  Google Scholar 

  79. T.-Y. Si, C.-G. Bao, B.-W. Li, Commun. Theor. Phys. 35, 195 (2001)

    Article  ADS  Google Scholar 

  80. J.L. Marín, S.A. Cruz, J. Phys. B 25, 4365 (1992)

    Article  ADS  Google Scholar 

  81. E.V. Ludeña, J. Chem. Phys. 69, 1770 (1978)

    Article  ADS  Google Scholar 

  82. S. Majumdar, A. K. Roy, Int. J. Quantum Chem. e26630 (2021)

Download references

Acknowledgements

Financial support from BRNS, India (sanction order: 58/14/03/2019-BRNS/10255), is gratefully acknowledged. SM is obliged to IISER-K for her Senior Research Fellowship. NM thanks CSIR, New Delhi, India, for a Senior Research Associateship (Pool No. 9033A). It is a pleasure to thank the anonymous referee for the constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

SM and AKR wrote the computer code for the problem. SM and NM generated the data, carried out the analysis of results, interpretation of the data and drafted the manuscript. AKR formulated the problem, drafted the manuscript, approved the version of the manuscript and procured the funding.

Corresponding author

Correspondence to Amlan K. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, S., Mukherjee, N. & Roy, A.K. Confined H\(^-\) ion within a density functional framework. Eur. Phys. J. D 75, 86 (2021). https://doi.org/10.1140/epjd/s10053-021-00077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00077-9

Navigation